#include using namespace std; class xrand { uint64_t x; public: using result_type = uint32_t; static constexpr result_type min() { return std::numeric_limits::min(); } static constexpr result_type max() { return std::numeric_limits::max(); } xrand(uint64_t k) : x(k) {} xrand() : xrand(1) {} result_type operator()() { x ^= x << 9; x ^= x >> 7; return (x * 0x123456789abcdef) >> 32; } }; xrand rng; uniform_real_distribution dist_d(0.5, 1.5); constexpr int T = 52, N = 10; constexpr int sample_size = 1000; double calc_p(int s, int p, int r, double d) { assert(s <= r); const double base = sqrt(r) * pow(1.05, p) * d; double low = clamp(s / base, 0.75, 1.25); double high = clamp((s + 1) / base, 0.75, 1.25); if (s == r) { high = 1.25; } return (high - low) * 2; } int convert(int x) { const int r = x % 10; if (r == 0) return x; if (r <= 3) return x + 3 - r; if (r <= 6) return x + 6 - r; return x + 10 - r; } int main() { int t, n, money; cin >> t >> n >> money; money /= 500; array s, p, r; s.fill(0); p.fill(0); r.fill(0); array, N> d_particle; for (int i = 0; i < N; i++) { for (auto &&x : d_particle[i]) { x = dist_d(rng); } } int score = 0; for (int week = 0; week < T; week++) { array d_avg; for (int i = 0; i < N; i++) { d_avg[i] = reduce(d_particle[i].begin(), d_particle[i].end()) / sample_size; } if (week >= 44) { double w_sum = 0.0; array weight; for (int i = 0; i < N; i++) { weight[i] = pow(1.05, 2 * p[i]) * d_avg[i] * d_avg[i]; w_sum += weight[i]; } cout << 1; for (int i = 0; i < 10; i++) { cout << ' ' << int(money * weight[i] / w_sum); } cout << endl; } else if (week % 3 != 1 or money < 2000) { cout << 1; for (int i = 0; i < 10; i++) { cout << ' ' << min(money / 10, max(0, convert(1.5 * d_avg[i] * d_avg[i] * pow(1.05, 3 * p.at(i))) - r.at(i))); } cout << endl; } else { cout << "2 2" << endl; } cin >> money; money /= 500; for (int i = 0; i < N; i++) { cin >> s[i]; score += s[i]; } double p2_sum = 0; for (int i = 0; i < N; i++) { cin >> p[i]; for (int w = week + 1; w < T; w++) { p2_sum += pow(1.05, 2 * min(60.0, p[i] + 1.1 * (w - week - 1))) * d_avg[i] * d_avg[i]; } } for (auto &&x : r) { cin >> x; } for (int i = 0; i < N; i++) { array d_prob; for (int j = 0; j < sample_size; j++) { d_prob[j] = calc_p(s[i], p[i], r[i] + s[i], d_particle[i][j]); } discrete_distribution dist_idx(d_prob.begin(), d_prob.end()); array d_new; for (int j = 0; j < sample_size; j++) { d_new[j] = d_particle[i][dist_idx(rng)]; } d_particle[i] = move(d_new); } // cerr << score + 5 * p2_sum << endl; // if (week == T - 1) { // for (int i = 0; i < N; i++) { // cerr << reduce(d_particle[i].begin(), d_particle[i].end()) / // sample_size // << endl; // } // } } return 0; }