#include // #include using namespace std; using namespace numbers; using uint = unsigned int; template struct modular_fixed_base{ static constexpr uint mod(){ return _mod; } template static vector precalc_power(T base, int SZ){ vector res(SZ + 1, 1); for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base; return res; } static vector _INV; static void precalc_inverse(int SZ){ if(_INV.empty()) _INV.assign(2, 1); for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]); } // _mod must be a prime static modular_fixed_base _primitive_root; static modular_fixed_base primitive_root(){ if(_primitive_root) return _primitive_root; if(_mod == 2) return _primitive_root = 1; if(_mod == 998244353) return _primitive_root = 3; uint divs[20] = {}; divs[0] = 2; int cnt = 1; uint x = (_mod - 1) / 2; while(x % 2 == 0) x /= 2; for(auto i = 3; 1LL * i * i <= x; i += 2){ if(x % i == 0){ divs[cnt ++] = i; while(x % i == 0) x /= i; } } if(x > 1) divs[cnt ++] = x; for(auto g = 2; ; ++ g){ bool ok = true; for(auto i = 0; i < cnt; ++ i){ if((modular_fixed_base(g).power((_mod - 1) / divs[i])) == 1){ ok = false; break; } } if(ok) return _primitive_root = g; } } constexpr modular_fixed_base(): data(){ } modular_fixed_base(const double &x){ data = normalize(llround(x)); } modular_fixed_base(const long double &x){ data = normalize(llround(x)); } template::value>::type* = nullptr> modular_fixed_base(const T &x){ data = normalize(x); } template::value>::type* = nullptr> static uint normalize(const T &x){ int sign = x >= 0 ? 1 : -1; uint v = _mod <= sign * x ? sign * x % _mod : sign * x; if(sign == -1 && v) v = _mod - v; return v; } const uint &operator()() const{ return data; } template operator T() const{ return data; } modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; } modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; } template::value>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); } template::value>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); } modular_fixed_base &operator++(){ return *this += 1; } modular_fixed_base &operator--(){ return *this += _mod - 1; } modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; } modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; } modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); } modular_fixed_base &operator*=(const modular_fixed_base &rhs){ data = (unsigned long long)data * rhs.data % _mod; return *this; } template::value>::type* = nullptr> modular_fixed_base &inplace_power(T e){ if(!data) return *this = {}; if(data == 1) return *this; if(data == mod() - 1) return e % 2 ? *this : *this = -*this; if(e < 0) *this = 1 / *this, e = -e; modular_fixed_base res = 1; for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this; return *this = res; } template::value>::type* = nullptr> modular_fixed_base power(T e) const{ return modular_fixed_base(*this).inplace_power(e); } modular_fixed_base &operator/=(const modular_fixed_base &otr){ int a = otr.data, m = _mod, u = 0, v = 1; if(a < _INV.size()) return *this *= _INV[a]; while(a){ int t = m / a; m -= t * a; swap(a, m); u -= t * v; swap(u, v); } assert(m == 1); return *this *= u; } uint data; }; template vector> modular_fixed_base<_mod>::_INV; template modular_fixed_base<_mod> modular_fixed_base<_mod>::_primitive_root; template bool operator==(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data == rhs.data; } template::value>::type* = nullptr> bool operator==(const modular_fixed_base<_mod> &lhs, T rhs){ return lhs == modular_fixed_base<_mod>(rhs); } template::value>::type* = nullptr> bool operator==(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) == rhs; } template bool operator!=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return !(lhs == rhs); } template::value>::type* = nullptr> bool operator!=(const modular_fixed_base<_mod> &lhs, T rhs){ return !(lhs == rhs); } template::value>::type* = nullptr> bool operator!=(T lhs, const modular_fixed_base<_mod> &rhs){ return !(lhs == rhs); } template bool operator<(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data < rhs.data; } template bool operator>(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data > rhs.data; } template bool operator<=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data <= rhs.data; } template bool operator>=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data >= rhs.data; } template modular_fixed_base<_mod> operator+(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) += rhs; } template::value>::type* = nullptr> modular_fixed_base<_mod> operator+(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) += rhs; } template::value>::type* = nullptr> modular_fixed_base<_mod> operator+(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) += rhs; } template modular_fixed_base<_mod> operator-(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; } template::value>::type* = nullptr> modular_fixed_base<_mod> operator-(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; } template::value>::type* = nullptr> modular_fixed_base<_mod> operator-(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; } template modular_fixed_base<_mod> operator*(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; } template::value>::type* = nullptr> modular_fixed_base<_mod> operator*(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; } template::value>::type* = nullptr> modular_fixed_base<_mod> operator*(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; } template modular_fixed_base<_mod> operator/(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; } template::value>::type* = nullptr> modular_fixed_base<_mod> operator/(const modular_fixed_base<_mod> &lhs, T rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; } template::value>::type* = nullptr> modular_fixed_base<_mod> operator/(T lhs, const modular_fixed_base<_mod> &rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; } template istream &operator>>(istream &in, modular_fixed_base<_mod> &number){ long long x; in >> x; number.data = modular_fixed_base<_mod>::normalize(x); return in; } // #define _SHOW_FRACTION template ostream &operator<<(ostream &out, const modular_fixed_base<_mod> &number){ out << number(); #if defined(LOCAL) && defined(_SHOW_FRACTION) cerr << "("; for(auto d = 1; ; ++ d){ if((number * d).data <= 1000000){ cerr << (number * d).data; if(d != 1) cerr << "/" << d; break; } else if((-number * d).data <= 1000000){ cerr << "-" << (-number * d).data; if(d != 1) cerr << "/" << d; break; } } cerr << ")"; #endif return out; } #undef _SHOW_FRACTION // const uint mod = 1e9 + 7; // 1000000007 const uint mod = (119 << 23) + 1; // 998244353 // const uint mod = 1e9 + 9; // 1000000009 using modular = modular_fixed_base; template struct graph{ struct E{ int from, to; T cost; }; int n; vector edge; vector> adj; function ignore; graph(int n = 1): n(n), adj(n){ assert(n >= 1); } graph(const vector> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v); } else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v); } graph(const vector>> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w); } else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w); } graph(int n, vector> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v); } graph(int n, vector> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w); } int operator()(int u, int id) const{ #ifdef LOCAL assert(0 <= id && id < (int)edge.size()); assert(edge[id].from == u || edge[id].to == u); #endif return u ^ edge[id].from ^ edge[id].to; } int link(int u, int v, T w = {}){ // insert an undirected edge int id = (int)edge.size(); adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w}); return id; } int orient(int u, int v, T w = {}){ // insert a directed edge int id = (int)edge.size(); adj[u].push_back(id), edge.push_back({u, v, w}); return id; } void clear(){ for(auto [u, v, w]: edge){ adj[u].clear(); adj[v].clear(); } edge.clear(); ignore = {}; } graph transposed() const{ // the transpose of the directed graph graph res(n); for(auto &e: edge) res.orient(e.to, e.from, e.cost); res.ignore = ignore; return res; } int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule) return (int)adj[u].size(); } // The adjacency list is sorted for each vertex. vector> get_adjacency_list() const{ vector> res(n); for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){ if(ignore && ignore(id)) continue; res[(*this)(u, id)].push_back(u); } return res; } void set_ignoration_rule(const function &f){ ignore = f; } void reset_ignoration_rule(){ ignore = nullptr; } friend ostream &operator<<(ostream &out, const graph &g){ for(auto id = 0; id < (int)g.edge.size(); ++ id){ if(g.ignore && g.ignore(id)) continue; auto &e = g.edge[id]; out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n"; } return out; } }; template struct disjoint_set{ int n, _classes; vector p; disjoint_set(int n): n(n), _classes(n), p(n, -1){ } int make_set(){ p.push_back(-1); ++ _classes; return n ++; } int classes() const{ return _classes; } int root(int u){ return p[u] < 0 ? u : p[u] = root(p[u]); } bool share(int a, int b){ return root(a) == root(b); } int size(int u){ return -p[root(u)]; } bool merge(int u, int v){ u = root(u), v = root(v); if(u == v) return false; -- _classes; if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v); p[u] += p[v], p[v] = u; return true; } bool merge(int u, int v, auto act){ u = root(u), v = root(v); if(u == v) return false; -- _classes; bool swapped = false; if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v), swapped = true; p[u] += p[v], p[v] = u; act(u, v, swapped); return true; } void clear(){ _classes = n; fill(p.begin(), p.end(), -1); } vector> group_up(){ vector> g(n); for(auto i = 0; i < n; ++ i) g[root(i)].push_back(i); g.erase(remove_if(g.begin(), g.end(), [&](auto &s){ return s.empty(); }), g.end()); return g; } }; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n, m; cin >> n >> m; vector a(n); copy_n(istream_iterator(cin), n, a.begin()); graph g(n); for(auto i = 0; i < m; ++ i){ int u, v; cin >> u >> v, -- u, -- v; g.link(u, v, 1); } map> appear; for(auto u = 0; u < n; ++ u){ int x = a[u]; for(auto p = 2; p * p <= x; ++ p){ if(x % p == 0){ if(!appear.contains(p)){ appear[p] = vector(n); } int e = 0; while(x % p == 0){ x /= p; ++ e; } appear[p][u] = e; } } if(x >= 2){ if(!appear.contains(x)){ appear[x] = vector(n); } appear[x][u] = 1; } } vector res(n, 1); for(auto [p, e]: appear){ auto power = modular::precalc_power(p, n); static vector order(n); iota(order.begin(), order.end(), 0); ranges::sort(order, [&](int u, int v){ return e[u] < e[v]; }); static disjoint_set dsu(n); dsu.clear(); static vector was(n), active(n); active[0] = p; res[0] *= power[e[0]]; for(auto u: order){ was[u] = p; for(auto id: g.adj[u]){ int v = g(u, id); if(was[v] != p || !dsu.merge(u, v)){ continue; } for(auto w = 0; w < n; ++ w){ if(dsu.share(0, w) && active[w] != p){ active[w] = p; res[w] *= power[e[u]]; } } } } } ranges::copy(res, ostream_iterator(cout, "\n")); return 0; } /* */ //////////////////////////////////////////////////////////////////////////////////////// // // // Coded by Aeren // // // ////////////////////////////////////////////////////////////////////////////////////////