#ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode ); if( exec_mode == debug_mode || exec_mode == library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){ SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); cin >> test_case_num; } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ cin >> A; ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); } #define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n" #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n" #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n" #endif #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; template using T2 = pair; template using T3 = tuple; template using T4 = tuple; using path = pair; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define TYPE_OF( VAR ) decay_t #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; } #define CIN_A( LL , A , N ) LL A[N]; SET_A( A , N ); #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( #__VA_ARGS__ , ":" , naive , match ? "==" : "!=" , answer ); if( !match ){ return; } // 入出力用 template inline basic_istream& VariadicCin( basic_istream& is ) { return is; } template inline basic_istream& VariadicCin( basic_istream& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator ) { return is; } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg& arg ) { return os << arg; } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); } // 算術用 template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ static_assert( ! is_same::value && ! is_same::value ); \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ static ll ANSWER[CONSTEXPR_LENGTH]; \ static ll ANSWER_INV[CONSTEXPR_LENGTH]; \ static ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索テンプレート // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ if( MINIMUM <= MAXIMUM ){ \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( "二分探索中:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , "-" , TARGET , "=" , VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ CERR( "二分探索終了:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , ( EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) , TARGET ); \ if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \ CERR( "二分探索成功" ); \ } else { \ CERR( "二分探索失敗" ); \ ANSWER = MAXIMUM + 1; \ } \ } else { \ CERR( "二分探索失敗: " , MINIMUM , ">" , MAXIMUM ); \ ANSWER = MAXIMUM + 1; \ } \ // 単調増加の時にEXPRESSION >= TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調増加の時にEXPRESSION <= TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION >= TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION <= TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 template inline typename set::iterator MaximumLeq( set& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 template inline typename set::iterator MaximumLt( set& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 template inline typename set::iterator MinimumGeq( set& S , const T& t ) { return S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 template inline typename set::iterator MinimumGt( set& S , const T& t ) { return S.upper_bound( t ); } // データ構造用 template inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; } template inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; } template inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; } template inline const T& Zero() { static const T z = 0; return z; } template inline const T& One() { static const T o = 1; return o; }\ template inline T AddInv( const T& t ) { return -t; } template inline T Id( const T& v ) { return v; } template inline T Min( const T& a , const T& b ){ return a < b ? a : b; } template inline T Max( const T& a , const T& b ){ return a < b ? b : a; } // グリッド問題用 int H , W , H_minus , W_minus , HW; vector > non_wall; inline T2 EnumHW( const int& v ) { return { v / W , v % W }; } inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; } const string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return ik?0:jh?3:(assert(false),-1);} // v->wの方向番号を取得 inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;} inline void SetEdgeOnGrid( const string& Si , const int& i , list ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+10){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1 ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+10){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1 >& non_wall , const char& walkable = '.' , const char& unwalkable = '#' ){non_wall.push_back(vector(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}} // グラフ用関数 template list E( const int& i ); template vector > e; // デバッグ用 #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void AutoCheck( int& exec_mode ); inline void Solve(); inline void Experiment(); inline void SmallTest(); inline void RandomTest(); ll GetRand( const ll& Rand_min , const ll& Rand_max ); int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , debug_mode , 1 ); CEXPR( int , library_search_mode , 2 ); CEXPR( int , experiment_mode , 3 ); CEXPR( int , small_test_mode , 4 ); CEXPR( int , random_test_mode , 5 ); #endif // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& /* C-x 3 C-x o C-x C-fによるファイル操作用 BIT: c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txt BFS: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt DFS on Tree: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepththFirstSearch/Tree/compress.txt Divisor: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt Mod: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt Polynomial c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt */ // VVV ライブラリは以下に挿入する。 #define DIJKSTRA_BODY( SET_FOUND , SET_WEIGHT , UPDATE_FOUND , CHECK_FOUND , INITIALISE_PREV , SET_PREV ) \ static const U& unit = Unit(); \ assert( unit != m_found && unit < m_infty ); \ const int i_start = e_inv( t_start ); \ set > vertex{}; \ SET_FOUND; \ SET_WEIGHT; \ vertex.insert( pair( weight[i_start] = unit , i_start ) ); \ INITIALISE_PREV; \ \ if( i_start != i_final ){ \ \ while( ! vertex.empty() ){ \ \ auto itr_vertex = vertex.begin(); \ const pair v = *itr_vertex; \ const int& i = v.second; \ \ if( i == i_final ){ \ \ break; \ \ } \ \ const U& u = v.first; \ UPDATE_FOUND; \ vertex.erase( itr_vertex ); \ const list > edge_i = E( e( i ) ); \ list > changed_vertex{}; \ \ for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \ \ const int& j = e_inv( itr_edge_i->first ); \ U& weight_j = weight[j]; \ \ if( CHECK_FOUND ){ \ \ const U& edge_ij = itr_edge_i->second; \ const U temp = Addition( u , edge_ij ); \ assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \ \ if( weight_j > temp ){ \ \ if( weight_j != m_infty ){ \ \ vertex.erase( pair( weight_j , j ) ); \ \ } \ \ SET_PREV; \ changed_vertex.push_back( pair( weight_j = temp , j ) ); \ \ } \ \ } \ \ } \ \ for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \ \ vertex.insert( *itr_changed ); \ \ } \ \ } \ \ } \ // メモリが不足する場合はEの定義を前計算しないでその都度計算させること。 template > E(const T&) , int size_max> class DijkstraBody { private: int m_size; U m_infty; U m_found; public: inline DijkstraBody( const int& size , const U& infty , const U& found ); // 経路が存在しない場合の返り値はm_infty U Solve( const T& t_start , const T& t_final ); U Solve( const T& t_start , const T& t_final , list& path ); void Solve( const T& t_start , vector& weight ); void Solve( const T& t_start , vector& weight , list ( &path )[size_max] ); const U& Infty() const; private: virtual const U& Unit() const = 0; virtual U Addition( const U& , const U& ) const = 0; virtual T e( const int& i ) = 0; virtual int e_inv( const T& t ) = 0; virtual void Reset() = 0; }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分が0以上である。 // (2) 2^{31}-1がEの値の各成分の第2成分size_max個以下の和で表せるいかなる数よりも大きい。 // (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。 // が成り立つ場合にのみサポート。 // 単一始点単一終点最短経路探索/経路復元なしO((size+|E|)log size) // 単一始点単一終点最短経路探索/経路復元ありO((size+|E|)log size) // 単一始点全点最短経路探索/経路復元なしO((size+|E|)log size) // 単一始点全点最短経路探索/経路復元ありO(size^2 + |E| log size) template > E(const int&) , int size_max> class Dijkstra : public DijkstraBody { public: inline Dijkstra( const int& size ); private: inline const ll& Unit() const; inline ll Addition( const ll& , const ll& ) const; inline int e( const int& i ); inline int e_inv( const int& t ); inline void Reset(); }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分がe_T()以上である。 // (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。 // (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。 // (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して全順序モノイドである。 // (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。 // が成り立つ場合にのみサポート。 // 単一始点単一終点最短経路探索/経路復元なしO((size+|E|)(log size)^2) // 単一始点単一終点最短経路探索/経路復元ありO((size+|E|)(log size)^2) // 単一始点全点最短経路探索/経路復元なしO((size+|E|)(log size)^2) // 単一始点全点最短経路探索/経路復元ありO(size^2 log size + |E|(log size)^2) template > E(const T&) , int size_max> class MemorisationDijkstra : public DijkstraBody { private: int m_length; map m_memory; vector m_memory_inv; public: inline MemorisationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 ); private: inline const U& Unit() const; inline U Addition( const U& , const U& ) const; inline T e( const int& i ); inline int e_inv( const T& t ); inline void Reset(); }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分がe_T()以上である。 // (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。 // (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。 // (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して全順序モノイドである。 // (5) (enum_T,enum_T_inv)が互いに逆写像である。 // (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。 // が成り立つ場合にのみサポート。 // 単一始点単一終点最短経路探索/経路復元なしO((size+|E|)log size) // 単一始点単一終点最短経路探索/経路復元ありO((size+|E|)log size) // 単一始点全点最短経路探索/経路復元なしO((size+|E|)log size) // 単一始点全点最短経路探索/経路復元ありO(size^2 + |E| log size) template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> class EnumerationDijkstra : public DijkstraBody { public: inline EnumerationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 ); private: inline const U& Unit() const; inline U Addition( const U& , const U& ) const; inline T e( const int& i ); inline int e_inv( const T& t ); inline void Reset(); }; template > E(const T&) , int size_max> inline DijkstraBody::DijkstraBody( const int& size , const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) { static_assert( ! is_same::value ); } template > E(const int&) , int size_max> inline Dijkstra::Dijkstra( const int& size ) : DijkstraBody( size , 9223372036854775807 , -1 ) {} template > E(const T&) , int size_max> inline MemorisationDijkstra::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody( size , infty , found ) , m_length() , m_memory() , m_memory_inv() {} template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline EnumerationDijkstra::EnumerationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody( size , infty , found ) {} template > E(const T&) , int size_max> U DijkstraBody::Solve( const T& t_start , const T& t_final ) { const int i_final = e_inv( t_final ); \ DIJKSTRA_BODY( , vector weight( m_size , m_infty ) , weight[i] = m_found , weight_j != m_found , , ); Reset(); return weight[i_final]; } template > E(const T&) , int size_max> U DijkstraBody::Solve( const T& t_start , const T& t_final , list& path ) { const int i_final = e_inv( t_final ); \ DIJKSTRA_BODY( , vector weight( m_size , m_infty ) , weight[i] = m_found , weight_j != m_found , vector prev( m_size ) , prev[j] = i ); int i = i_final; while( i != i_start ){ path.push_front( e( i ) ); i = prev[i]; } path.push_front( t_start ); Reset(); return weight[i_final]; } template > E(const T&) , int size_max> void DijkstraBody::Solve( const T& t_start , vector& weight ) { constexpr const int i_final = -1; DIJKSTRA_BODY( vector found( m_size ) , weight = vector( m_size , m_infty ) , found[i] = true , !found[j] , , ); Reset(); return; } template > E(const T&) , int size_max> void DijkstraBody::Solve( const T& t_start , vector& weight , list ( &path )[size_max] ) { constexpr const int i_final = -1; DIJKSTRA_BODY( vector found( m_size ) , weight = vector( m_size , m_infty ) , found[i] = true , !found[j] , vector prev( m_size ) , prev[j] = i ); for( int j = 0 ; j < m_size ; j++ ){ list& path_j = path[j]; int i = j; while( i != i_start ){ path_j.push_front( e( i ) ); i = prev[i]; } path_j.push_front( t_start ); } Reset(); return; } template > E(const T&) , int size_max> const U& DijkstraBody::Infty() const { return m_infty; } template > E(const int&) , int size_max> inline const ll& Dijkstra::Unit() const { static const ll unit = 0; return unit; } template > E(const T&) , int size_max> inline const U& MemorisationDijkstra::Unit() const { return e_U(); } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline const U& EnumerationDijkstra::Unit() const { return e_U(); } template > E(const int&) , int size_max> inline ll Dijkstra::Addition( const ll& u0 , const ll& u1 ) const { return u0 + u1; } template > E(const T&) , int size_max> inline U MemorisationDijkstra::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline U EnumerationDijkstra::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); } template > E(const T&) , int size_max> inline T MemorisationDijkstra::e( const int& i ) { assert( i < m_length ); return m_memory_inv[i]; } template > E(const int&) , int size_max> inline int Dijkstra::e( const int& i ) { return i; } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline T EnumerationDijkstra::e( const int& i ) { return enum_T( i ); } template > E(const T&) , int size_max> inline int MemorisationDijkstra::e_inv( const T& t ) { using base = DijkstraBody; if( m_memory.count( t ) == 0 ){ assert( m_length < base::m_size ); m_memory_inv.push_back( t ); return m_memory[t] = m_length++; } return m_memory[t]; } template > E(const int&) , int size_max> inline int Dijkstra::e_inv( const int& t ) { return t; } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline int EnumerationDijkstra::e_inv( const T& t ) { return enum_T_inv( t ); } template > E(const T&) , int size_max> inline void MemorisationDijkstra::Reset() { m_length = 0; m_memory.clear(); m_memory_inv.clear(); } template > E(const int&) , int size_max> inline void Dijkstra::Reset() {} template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline void EnumerationDijkstra::Reset() {} // nの素因数分解:SetPrimeFactorisation(CO PrimeEnumeration& prime,CO INT& n,VE& P,VE& EX) TE CL PrimeEnumeration{PU:bool m_is_composite[val_limit];INT m_val[LE_max];int m_LE;CE PrimeEnumeration();CE CO INT& OP[](CRI n) CO;CE CO INT& Get(CRI n) CO;CE CO bool& IsComposite(CRI i) CO;CE CRI LE() CO NE;}; TE CE PrimeEnumeration::PrimeEnumeration():m_is_composite(),m_val(),m_LE(0){for(INT i = 2;i < val_limit;i++){if(! m_is_composite[i]){INT j = i;WH((j += i)< val_limit){m_is_composite[j] = true;}m_val[m_LE++] = i;if(m_LE >= LE_max){break;}}}}TE CE CO INT& PrimeEnumeration::OP[](CRI n)CO{assert(n < m_LE);RE m_val[n];}TE CE CO INT& PrimeEnumeration::Get(CRI n)CO{RE OP[](n);}TE CE CO bool& PrimeEnumeration::IsComposite(CRI i)CO{assert(i < val_limit);RE m_is_composite[i];}TE CE CRI PrimeEnumeration::LE()CO NE{RE m_LE;} TE VO SetPrimeFactorisation(CO PrimeEnumeration& prime,CO INT1& n,VE& P,VE& EX){INT1 n_copy = n;int i = 0;WH(i < prime.m_LE){CO INT2& p = prime[i];if(p * p > n_copy){break;}if(n_copy % p == 0){P.push_back(p);EX.push_back(1);INT3& EX_back = EX.back();n_copy /= p;WH(n_copy % p == 0){EX_back++;n_copy /= p;}}i++;}if(n_copy != 1){P.push_back(n_copy);EX.push_back(1);}RE;} // AAA ライブラリは以上に挿入する。 // VVV テンプレート引数用の関数は以下に挿入する。 vector > Exponent; int current_num; // H,W,eは宣言済み。 template list E( const int& i ) { list answer{}; // list answer = e[i]; // VVV 入力によらない処理は以下に挿入する。 auto& ei = e[i]; FOR_ITR( ei ){ answer.push_back( { *itr , max( Exponent[i][current_num] , Exponent[*itr][current_num] ) } ); } // AAA 入力によらない処理は以上に挿入する。 return answer; } // AAA テンプレート引数用の関数は以上に挿入する。 ll Naive( int N , int M , int K ) { ll answer = N + M + K; return answer; } ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } inline void Solve() { // // 大きな素数 CEXPR( ll , P , 998244353 ); // // CEXPR( ll , P , 1000000007 ); // Mod

を使う時はP2に変更。 // // データ構造使用畤のNの上限 // DEXPR( int , bound_N , 100000 , 100 ); // 0が5個 // // DEXPR( int , bound_N , 1000000000 , 100 ); // 0が9個 // // DEXPR( ll , bound_N , 1000000000000000000 , 100 ); // 0が18個 // // データ構造使用畤のMの上限 // // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N ); // DEXPR( int , bound_M , 100000 , 100 ); // 0が5個 // // DEXPR( int , bound_M , 1000000000 , 100 ); // 0が9個 // // DEXPR( ll , bound_M , 1000000000000000000 , 100 ); // 0が18個 // // 数 CIN( ll , N ); CIN( ll , M ); // CIN( ll , N , M , K ); // // CIN_ASSERT( N , 1 , bound_N ); // ランダムテスト用。上限のデフォルト値は10^5。 // // CIN_ASSERT( M , 1 , bound_M ); // ランダムテスト用。上限のデフォルト値は10^5。 // // 文字列 // CIN( string , S ); // CIN( string , T ); // // 配列 CIN_A( ll , A , N ); // // CIN_A( ll , B , N ); // // ll A[N]; // // ll B[N]; // // ll A[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。 // // ll B[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。 // // FOR( i , 0 , N ){ // // cin >> A[i] >> B[i]; // // } constexpr PrimeEnumeration pe{}; map prime_set{}; vector Prime[N]; Exponent.resize( N ); FOR( i , 0 , N ){ auto& Prime_i = Prime[i]; SetPrimeFactorisation( pe , A[i] , Prime_i , Exponent[i] ); FOR_ITR( Prime_i ){ prime_set[*itr]; } } int prime_size = 0; FOR_ITR( prime_set ){ itr->second = prime_size++; } FOR( i , 0 , N ){ vector temp( prime_size ); int prime_i_size = Prime[i].size(); FOR( j , 0 , prime_i_size ){ temp[prime_set[Prime[i][j]]] = Exponent[i][j]; } Prime[i].resize( prime_size ); Exponent[i] = temp; } // // 順列 // int P[N]; // int P_inv[N]; // FOR( i , 0 , N ){ // cin >> P[i]; // P_inv[--P[i]] = i; // } // グラフ e.resize( N ); // e.resize( N ); FOR( j , 0 , M ){ CIN_ASSERT( uj , 1 , N ); CIN_ASSERT( vj , 1 , N ); uj--; vj--; e[uj].push_back( vj ); e[vj].push_back( uj ); // // CIN( ll , wj ); // // e[uj].push_back( { vj , wj } ); // // e[vj].push_back( { uj , wj } ); } current_num = 0; FOR_ITR( prime_set ){ EnumerationDijkstra,Zero,E,250,Id,Id > d{ int( N ) }; vector answer{}; d.Solve( 0 , answer ); FOR( i , 1 , N ){ Prime[i][current_num] = answer[i]; } current_num++; } COUT( A[0] ); FOR( i , 1 , N ){ ll answer = 1; FOR_ITR( prime_set ){ POWER_MOD( power , itr->first , Prime[i][itr->second] , P ); ( answer *= power ) %= P; } COUT( answer ); } // // 座標圧縮や単一クエリタイプなどのための入力格納 // T3 data[M]; // FOR( j , 0 , M ){ // CIN( ll , x , y , z ); // data[j] = { x , y , z }; // } // // 一般のクエリ // CIN( int , Q ); // // DEXPR( int , bound_Q , 100000 , 100 ); // 基本不要。 // // CIN_ASSERT( Q , 1 , bound_Q ); // 基本不要。 // // T3 query[Q]; // // T2 query[Q]; // FOR( q , 0 , Q ){ // CIN( int , type ); // if( type == 1 ){ // CIN( int , x , y ); // // query[q] = { type , x , y }; // } else if( type == 2 ){ // CIN( int , x , y ); // // query[q] = { type , x , y }; // } else { // CIN( int , x , y ); // // query[q] = { type , x , y }; // } // // CIN( int , x , y ); // // // query[q] = { x , y }; // } // // sort( query , query + Q ); // // FOR( q , 0 , Q ){ // // auto& [x,y] = query[q]; // // // auto& [type,x,y] = query[q]; // // } // // データ構造や壁配列使用畤のH,Wの上限 // DEXPR( int , bound_H , 2000 , 30 ); // // DEXPR( int , bound_H , 100000 , 10 ); // 0が5個 // // CEXPR( int , bound_H , 1000000000 ); // 0が9個 // CEXPR( int , bound_W , bound_H ); // static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 ); // CEXPR( int , bound_HW , bound_H * bound_W ); // // CEXPR( int , bound_HW , 100000 ); // 0が5個 // // CEXPR( int , bound_HW , 1000000 ); // 0が6個 // // グリッド // cin >> H >> W; // // SET_ASSERT( H , 1 , bound_H ); // ランダムテスト用。上限のデフォルト値は2*10^3。 // // SET_ASSERT( W , 1 , bound_W ); // ランダムテスト用。上限のデフォルト値は2*10^3。 // H_minus = H - 1; // W_minus = W - 1; // HW = H * W; // // assert( HW <= bound_HW ); // 基本不要。上限のデフォルト値は4*10^6。 // string S[H]; // FOR( i , 0 , H ){ // cin >> S[i]; // // SetEdgeOnGrid( S[i] , i , e ); // // SetWallOnGrid( S[i] , i , non_wall ); // } // // {h,w}へデコード: EnumHW( v ) // // {h,w}をコード: EnumHW_inv( h , w ); // // (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h ); // // v->wの方向番号を取得: DirectionNumberOnGrid( v , w ); // // 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n ); // auto answer = Answer( N , M , K ); // RETURN( answer ); // // COUT( answer ); // // COUT_A( A , N ); } inline void Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } inline void SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // // COMPARE( N ); // } } REPEAT_MAIN(1);