// 入力フォーマットチェック #ifdef DEBUG #define _GLIBCXX_DEBUG #define SIGNAL signal( SIGABRT , &AlertAbort ); #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define SIGNAL #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n" #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n" #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n" #endif #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; template using T2 = pair; template using T3 = tuple; template using T4 = tuple; #define REPEAT_MAIN( BOUND ) int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define TYPE_OF( VAR ) decay_t #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX ) #define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; } #define CIN_A( LL , A , N ) LL A[N]; SET_A( A , N ); #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) COUT( __VA_ARGS__ ); return // 入出力用 template inline basic_istream& VariadicCin( basic_istream& is ) { return is; } template inline basic_istream& VariadicCin( basic_istream& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator ) { return is; } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg& arg ) { return os << arg; } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); } // デバッグ用 #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void AutoCheck( bool& auto_checked ); #endif #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ ll ANSWER[CONSTEXPR_LENGTH]; \ ll ANSWER_INV[CONSTEXPR_LENGTH]; \ ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define SFINAE_FOR_PO(DEFAULT) TY Arg,enable_if_t >::value>* DEFAULT #define DF_BODY_OF_PS_OF_MU_OF_PO_PROTH_MOD(TYPE,ARG,RHS) TE <> PO& PO::OP*=(ARG f){if(m_SZ != 0){VE v{};v.swap(m_f);TRPO TH_copy{m_SZ + f.m_SZ - 1,MO(v)};TH_copy *= RHS;m_f = MO(TH_copy.PO::m_f);m_SZ = m_f.SZ();}RE *TH;} TE CL PO{PU:VE m_f;uint m_SZ;PU:IN PO();IN PO(CO T& t);IN PO(T&& t);TE IN PO(CO Arg& n);IN PO(CO PO& f);IN PO(PO&& f);IN PO(CRUI i,CO T& t);IN PO(CRUI i,T&& t);TE IN PO(CRUI i,CO Arg& n);IN PO(CO VE& f);IN PO(VE&& f);IN PO& OP=(CO T& t);IN PO& OP=(T&& t);TE IN PO& OP=(CO Arg& n);IN PO& OP=(CO PO& f);IN PO& OP=(PO&& f);IN PO& OP=(CO VE& f);IN PO& OP=(VE&& f);IN CO T& OP[](CRUI i) CO;IN T& OP[](CRUI i);IN T OP()(CO T& t) CO;PO& OP+=(CO PO& f);PO& OP-=(CO PO& f);PO& OP*=(CO PO& f);PO& OP*=(PO&& f);PO& OP/=(CO T& t);IN PO& OP/=(CO PO& f);PO& OP%=(CO T& t);PO& OP%=(CO PO& f);IN PO OP-() CO;PO& OP<<=(CO T& t);IN CO VE& GetCoefficient() CO NE;IN CRUI SZ() CO NE;IN VO swap(PO& f);IN VO swap(VE& f);VO ReMORedundantZero();IN string Display() CO NE;ST PO Quotient(CO PO& f0,CO PO& f1);ST PO TransposeQuotient(CO PO& f0,CRUI f0_transpose_SZ,CO PO& f1_transpose_inverse,CRUI f1_SZ);ST PO Transpose(CO PO& f,CRUI f_transpose_SZ);ST IN CO PO& zero();ST IN CO T& CO_zero();ST IN CO T& CO_one();ST IN CO T& CO_minus_one();}; #define RE_ZERO_FOR_MU_FOR_TR_PO_IF(CONDITION) if(CONDITION){RE OP=(zero);} #define RE_ZERO_FOR_TR_MU_CO_FOR_TR_PO_IF(CONDITION) if(CONDITION){RE TRPO(m_N);} #define RE_ZERO_FOR__FOR_TR_PO_IF(MU,CONDITION) RE_ZERO_FOR_ ## MU ## _FOR_TR_PO_IF(CONDITION) #define SET_VE_FOR_AN_OF_MU_FOR_TR_PO(N_OUTPUT_LIM) if(PO::m_SZ < N_OUTPUT_LIM){for(uint i = PO::m_SZ;i < N_OUTPUT_LIM;i++){PO::m_f.push_back(0);}PO::m_SZ = N_OUTPUT_LIM;} #define SET_VE_FOR_AN_OF_TR_MU_CO_FOR_TR_PO(N_OUTPUT_LIM) VE AN(N_OUTPUT_LIM) #define SET_VE_FOR_AN_OF__FOR_TR_PO(MU,N_OUTPUT_LIM) SET_VE_FOR_AN_OF_ ## MU ## _FOR_TR_PO(N_OUTPUT_LIM) #define SET_SUM_OF_MU_FOR_TR_PO PO::m_f[i] = sum #define SET_SUM_OF_TR_MU_CO_FOR_TR_PO AN[i] = sum #define SET_SUM_OF__FOR_TR_PO(MU) SET_SUM_OF_ ## MU ## _FOR_TR_PO #define SET_N_INPUT_START_FOR_MU_FOR_TR_PO(F,SZ,N_INPUT_START_NUM) uint N_INPUT_START_NUM{};for(uint i = 0;i < SZ && searching;i++){if(F[i] != zero){N_INPUT_START_NUM = i;searching = false;}} #define SET_N_INPUT_MAX_FOR_MU_FOR_TR_PO(F,SZ,N_INPUT_MAX_NUM) uint N_INPUT_MAX_NUM{};searching = true;for(uint i = (SZ) - 1;searching;i--){if(F[i] != zero){N_INPUT_MAX_NUM = i;searching = false;}} #define CN_FOR_MU_FOR_TR_PO(J_MIN) CO uint j_max = i < N_input_max_0_start_1?i - N_input_start_1:N_input_max_0;T sum{zero};for(uint j = J_MIN;j <= j_max;j++){sum += PO::m_f[j] * f.PO::m_f[i - j];}PO::m_f[i] = sum; #define CN_FOR_TR_MU_CO_FOR_TR_PO(J_MIN) CO uint j_max = i < N_input_max_0_start_1?i - N_input_start_1:N_input_max_0;T& m_fi = AN[i];for(uint j = J_MIN;j <= j_max;j++){m_fi += PO::m_f[j] * f.PO::m_f[i - j];} #define CN_FOR__FOR_TR_PO(MU,J_MIN) CN_FOR_ ## MU ## _FOR_TR_PO(J_MIN) #define ZEROIFICATION_FOR_MU_FOR_TR_PO for(uint i = 0;i < N_input_start_0_start_1;i++){PO::m_f[i] = 0;} #define ZEROIFICATION_FOR_TR_MU_CO_FOR_TR_PO CRUI N_output_start_fixed = N_output_start < N_input_start_0_start_1?N_output_start:N_input_start_0_start_1;for(uint i = 0;i < N_output_start_fixed;i++){AN[i] = 0;} #define ZEROIFICATION_FOR__FOR_TR_PO(MU) ZEROIFICATION_FOR_ ## MU ## _FOR_TR_PO #define DF_0_OF__FOR_TR_PO(MU,ACCESS_ENTRY,N_OUTPUT_START) RE_ZERO_FOR__FOR_TR_PO_IF(MU,PO::m_SZ == 0);uint N_output_max = PO::m_SZ + f.PO::m_SZ - 2;if(N_output_max >= m_N){N_output_max = m_N - 1;}CO uint N_output_lim = N_output_max + 1;SET_VE_FOR_AN_OF__FOR_TR_PO(MU,N_output_lim);for(uint i = N_output_max;searching;i--){T sum{zero};for(uint j = 0;j <= i;j++){sum += ACCESS_ENTRY * f.PO::OP[](i - j);}SET_SUM_OF__FOR_TR_PO(MU);searching = i > N_OUTPUT_START;} #define DF_1_OF__FOR_TR_PO(MU) SET_N_INPUT_START_FOR_MU_FOR_TR_PO(PO::m_f,PO::m_SZ,N_input_start_0);RE_ZERO_FOR__FOR_TR_PO_IF(MU,searching);searching = true;SET_N_INPUT_START_FOR_MU_FOR_TR_PO(f,f.PO::m_SZ,N_input_start_1); #define SET_N_INPUT_RANGE SET_N_INPUT_MAX_FOR_MU_FOR_TR_PO(PO::m_f,PO::m_SZ,N_input_max_0);SET_N_INPUT_MAX_FOR_MU_FOR_TR_PO(f,f.PO::m_SZ < m_N?f.PO::m_SZ:m_N,N_input_max_1);CO uint N_input_max_0_max_1 = N_input_max_0 + N_input_max_1;CO uint N_input_start_0_start_1 = N_input_start_0 + N_input_start_1;uint N_output_lim_fixed = N_input_max_0_max_1 < m_N?N_input_max_0_max_1 + 1:m_N; #define DF_3_OF__FOR_TR_PO(MU) CO uint N_input_start_0_max_1 = N_input_start_0 + N_input_max_1;CO uint N_input_max_0_start_1 = N_input_max_0 + N_input_start_1;CO uint N_output_max_fixed = N_output_lim_fixed - 1;SET_VE_FOR_AN_OF__FOR_TR_PO(MU,N_output_lim_fixed);for(uint i = N_output_max_fixed;i > N_input_start_0_max_1;i--){CN_FOR__FOR_TR_PO(MU,i - N_input_max_1);}searching = true;for(uint i = N_input_start_0_max_1 < N_output_max_fixed?N_input_start_0_max_1:N_output_max_fixed;searching;i--){CN_FOR__FOR_TR_PO(MU,N_input_start_0);searching = i > N_input_start_0_start_1;}ZEROIFICATION_FOR__FOR_TR_PO(MU); #define SET_SHIFTED_VE_FOR_MU(V,F,I_START,I_MAX,I_SHIFT) VE V(product_LE);for(uint i = I_START;i <= I_MAX;i++){V[I_SHIFT + i] = F[i];} #define DF_OF_MU_FOR_TR_PO(RE_LINE_0,RE_LINE_1,RE_LINE_2,RE_LINE_3,RE_LINE_4,MU,ACCESS_ENTRY,N_OUTPUT_START,FIX_N_OUTPUT_LIM) CE CRUI border_0 = FFT_MU_border_0;CO T& zero = PO::CO_zero();bool searching = true;if(PO::m_SZ < border_0 && f.PO::m_SZ < border_0){RE_LINE_0;DF_0_OF__FOR_TR_PO(MU,ACCESS_ENTRY,N_OUTPUT_START);RE_LINE_1;}DF_1_OF__FOR_TR_PO(MU);RE_LINE_2;SET_N_INPUT_RANGE;FIX_N_OUTPUT_LIM;RE_LINE_3;DF_3_OF__FOR_TR_PO(MU);RE_LINE_4; #define DF_OF_INVERSE_FOR_TR_PO(TYPE,RECURSION) CRUI N = f.GetTruncation();uint PW;uint PW_2 = 1;TRPO< TYPE > f_inv{PW_2,PO< TYPE >::CO_one() / f[0]};WH(PW_2 < N){PW = PW_2;PW_2 *= 2;f_inv.SetTruncation(PW_2);RECURSION;}f_inv.SetTruncation(N);RE f_inv #define DF_OF_EXP_FOR_TR_PO(TYPE,RECURSION) CRUI N = f.GetTruncation();uint PW;uint PW_2 = 1;TRPO< TYPE > f_exp{PW_2,PO< TYPE >::CO_one()};WH(PW_2 < N){PW = PW_2;PW_2 *= 2;f_exp.SetTruncation(PW_2);RECURSION;}f_exp.SetTruncation(N);RE f_exp TE CL TRPO :PU PO{PU:uint m_N;PU:IN TRPO(CRUI N = 0);IN TRPO(CO TRPO& f);IN TRPO(TRPO&& f);IN TRPO(CRUI N,CO T& t);IN TRPO(CRUI N,CO PO& f);IN TRPO(CRUI N,PO&& f);IN TRPO(CRUI N,CRUI i,CO T& t);IN TRPO(CRUI N,CRUI i,T&& t);TE IN TRPO(CRUI N,CRUI i,CO Arg& t);IN TRPO(CRUI N,VE&& f);IN TRPO& OP=(CO TRPO& f);IN TRPO& OP=(TRPO&& f);IN TRPO& OP=(CO T& t);IN TRPO& OP=(T&& t);TE IN TRPO& OP=(CO Arg& n);IN TRPO& OP=(CO PO& f);IN TRPO& OP=(PO&& f);IN TRPO& OP+=(CO T& t);IN TRPO& OP+=(CO PO& f);IN TRPO& OP+=(CO TRPO& f);TRPO& TRPlus(CO PO& f,CRUI N_input_start,CRUI N_input_limit);IN TRPO& OP-=(CO T& t);IN TRPO& OP-=(CO PO& f);IN TRPO& OP-=(CO TRPO& f);TRPO& TRMinus(CO PO& f,CRUI N_input_start,CRUI N_input_limit);IN TRPO& OP*=(CO T& t);TRPO& OP*=(CO PO& f);IN TRPO& OP*=(PO&& f);TRPO& TRMU(CO PO& f,CRUI N_output_start,CRUI N_output_lim);TRPO TRMU_CO(CO PO& f,CRUI N_output_start,CRUI N_output_lim) CO;IN TRPO& OP/=(CO T& t);IN TRPO& OP/=(CO TRPO& t);IN TRPO& OP%=(CO T& t);IN TRPO OP-() CO;IN VO SetTruncation(CRUI N)NE;IN CRUI GetTruncation() CO NE;IN TRPO& TruncateInitial(CRUI N)NE;IN TRPO& TruncateFinal(CRUI N)NE;};TE CE CO uint FFT_MU_border_0 = 17; TE IN TRPO::TRPO(CRUI N):PO(),m_N(N){PO::m_f.reserve(m_N);}TE IN TRPO::TRPO(CO TRPO& f):PO(f),m_N(f.m_N){PO::m_f.reserve(m_N);}TE IN TRPO::TRPO(TRPO&& f):PO(MO(f)),m_N(MO(f.m_N)){PO::m_f.reserve(m_N);}TE IN TRPO::TRPO(CRUI N,CO T& t):PO(t),m_N(N){PO::m_f.reserve(m_N);}TE IN TRPO::TRPO(CRUI N,CO PO& f):PO(),m_N(N){PO::m_SZ = f.PO::m_SZ < m_N?f.PO::m_SZ:m_N;PO::m_f = VE(PO::m_SZ);for(uint i = 0;i < PO::m_SZ;i++){PO::m_f[i] = f.PO::m_f[i];}PO::m_f.reserve(m_N);}TE IN TRPO::TRPO(CRUI N,PO&& f):PO(),m_N(N){if(f.PO::m_SZ < m_N * 2){PO::OP=(MO(f));if(f.PO::m_SZ < m_N){PO::m_f.reserve(m_N);}else{TruncateFinal(m_N);}}else{PO::m_f = VE(m_N);for(uint i = 0;i < m_N;i++){PO::m_f[i] = MO(f.PO::m_f[i]);}PO::m_SZ = m_N;}}TE IN TRPO::TRPO(CRUI N,CRUI i,CO T& t):PO(),m_N(N){if(i < m_N?t != PO::CO_zero():false){PO::OP[](i) = t;}PO::m_f.reserve(m_N);}TE IN TRPO::TRPO(CRUI N,CRUI i,T&& t):PO(),m_N(N){if(i < m_N?t != PO::CO_zero():false){PO::OP[](i) = MO(t);}PO::m_f.reserve(m_N);}TE TE IN TRPO::TRPO(CRUI N,CRUI i,CO Arg& n):TRPO(N,i,T(n)){}TE IN TRPO::TRPO(CRUI N,VE&& f):PO(),m_N(N){CO uint f_SZ = f.SZ();if(f_SZ < m_N * 2){PO::OP=(MO(f));if(f_SZ < m_N){PO::m_f.reserve(m_N);}else{TruncateFinal(m_N);}}else{PO::m_f = VE(m_N);for(uint i = 0;i < m_N;i++){PO::m_f[i] = MO(f[i]);}PO::m_f.reserve(m_N);}} TE IN TRPO& TRPO::OP=(CO TRPO& f){PO::OP=(f);m_N = f.m_N;PO::m_f.reserve(m_N);RE *TH;} TE IN TRPO& TRPO::OP=(TRPO&& f){PO::OP=(MO(f));m_N = MO(f.m_N);PO::m_f.reserve(m_N);RE *TH;} TE IN TRPO& TRPO::OP=(CO T& t){PO::OP=(t);RE *TH;} TE IN TRPO& TRPO::OP=(T&& t){PO::OP=(MO(t));RE *TH;} TE TE IN TRPO& TRPO::OP=(CO Arg& n){PO::OP=(T(n));RE *TH;} TE IN TRPO& TRPO::OP=(CO PO& f){RE OP=(TRPO(m_N,f));} TE IN TRPO& TRPO::OP=(PO&& f){RE OP=(TRPO(m_N,MO(f)));} TE IN TRPO& TRPO::OP+=(CO T& t){PO::OP+=(t);RE *TH;}TE IN TRPO& TRPO::OP+=(CO PO& f){RE TRPO::TRPlus(f,0,f.m_SZ);}TE IN TRPO& TRPO::OP+=(CO TRPO& f){RE m_N == 0?OP=(f):TRPO::TRPlus(f,0,f.PO::m_SZ);}TE TRPO& TRPO::TRPlus(CO PO& f,CRUI N_input_start,CRUI N_input_lim){CRUI SZ = N_input_lim < m_N?N_input_lim < f.PO::m_SZ?N_input_lim:f.PO::m_SZ:m_N < f.PO::m_SZ?m_N:f.PO::m_SZ;if(PO::m_SZ < SZ){PO::m_f.reserve(SZ);for(uint i = N_input_start;i < PO::m_SZ;i++){PO::m_f[i] += f.PO::m_f[i];}for(uint i = PO::m_SZ;i < SZ;i++){PO::m_f.push_back(f.PO::m_f[i]);}PO::m_SZ = SZ;}else{for(uint i = N_input_start;i < SZ;i++){PO::m_f[i] += f.PO::m_f[i];}}RE *TH;}TE IN TRPO& TRPO::OP-=(CO T& t){PO::OP-=(t);RE *TH;}TE IN TRPO& TRPO::OP-=(CO PO& f){RE TRPO::TRMinus(f,0,f.m_SZ);}TE IN TRPO& TRPO::OP-=(CO TRPO& f){RE m_N == 0?OP=(-f):TRPO::TRMinus(f,0,f.PO::m_SZ);}TE TRPO& TRPO::TRMinus(CO PO& f,CRUI N_input_start,CRUI N_input_lim){CRUI SZ = N_input_lim < m_N?N_input_lim < f.PO::m_SZ?N_input_lim:f.PO::m_SZ:m_N < f.PO::m_SZ?m_N:f.PO::m_SZ;if(PO::m_SZ < SZ){PO::m_f.reserve(SZ);for(uint i = N_input_start;i < PO::m_SZ;i++){PO::m_f[i] -= f.PO::m_f[i];}for(uint i = PO::m_SZ;i < SZ;i++){PO::m_f.push_back(- f.PO::m_f[i]);}PO::m_SZ = SZ;}else{for(uint i = N_input_start;i < SZ;i++){PO::m_f[i] -= f.PO::m_f[i];}}RE *TH;}TE IN TRPO& TRPO::OP*=(CO T& t){PO::OP*=(t);RE *TH;}TE TRPO& TRPO::OP*=(CO PO& f){DF_OF_MU_FOR_TR_PO(RE_ZERO_FOR_MU_FOR_TR_PO_IF(f.PO::m_SZ == 0),RE *TH,RE_ZERO_FOR_MU_FOR_TR_PO_IF(searching),RE_ZERO_FOR_MU_FOR_TR_PO_IF(N_input_start_0_start_1 >= m_N),RE *TH,MU,PO::m_f[j],0,);}TE IN TRPO& TRPO::OP*=(PO&& f){RE OP*=(f);}TE TRPO& TRPO::TRMU(CO PO& f,CRUI N_output_start,CRUI N_output_lim){DF_OF_MU_FOR_TR_PO(,RE *TH,,RE_ZERO_FOR_MU_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE *TH,MU,PO::m_f[j],N_output_start,if(N_output_lim_fixed > N_output_lim){N_output_lim_fixed = N_output_lim;});}TE TRPO TRPO::TRMU_CO(CO PO& f,CRUI N_output_start,CRUI N_output_lim) CO{DF_OF_MU_FOR_TR_PO(,RE TRPO(m_N,MO(AN)),,RE_ZERO_FOR_TR_MU_CO_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE TRPO(m_N,MO(AN)),TR_MU_CO,PO::OP[](j),N_output_start,if(N_output_lim_fixed > N_output_lim){N_output_lim_fixed = N_output_lim;});}TE IN TRPO& TRPO::OP/=(CO T& t){PO::OP/=(t);RE *TH;}TE IN TRPO& TRPO::OP/=(CO TRPO& f){RE OP*=(Inverse(m_N > f.m_N?f:TRPO(m_N,f)));}TE IN TRPO& TRPO::OP%=(CO T& t){PO::OP%=(t);RE *TH;}TE IN TRPO TRPO::OP-() CO{RE MO(TRPO(m_N) -= *TH);}TE IN VO TRPO::SetTruncation(CRUI N)NE{if(N < m_N){TruncateFinal(m_N);}else{PO::m_f.reserve(N);}m_N = N;}TE IN CRUI TRPO::GetTruncation() CO NE{RE m_N;}TE IN TRPO& TRPO::TruncateInitial(CRUI N)NE{CRUI SZ = N < PO::m_SZ?N:PO::m_SZ;for(uint i = 0;i < SZ;i++){PO::m_f[i] = 0;}RE *TH;}TE IN TRPO& TRPO::TruncateFinal(CRUI N)NE{WH(PO::m_SZ > N){PO::m_f.pop_back();PO::m_SZ--;}RE *TH;}TE IN TRPO OP+(CO TRPO& f0,CO P& f1){RE MO(TRPO(f0) += f1);}TE IN TRPO OP-(CO TRPO& f){RE MO(TRPO(f.GetTurncation()) -= f);}TE IN TRPO OP-(CO TRPO& f0,CO P& f1){RE MO(TRPO(f0) -= f1);}TE IN TRPO OP*(CO TRPO& f0,CO P& f1){RE MO(TRPO(f0) *= f1);}TE IN TRPO OP/(CO TRPO& f0,CO P& f1){RE MO(TRPO(f0) /= f1);}TE IN TRPO OP%(CO TRPO& f0,CO T& t1){RE MO(TRPO(f0) %= t1);}TE TRPO Differential(CRUI n,CO TRPO& f){if(f.PO::m_SZ < n){RE TRPO(f.m_N - n,PO::zero());}VE df(f.PO::m_SZ - n);T coef = T::Factorial(n);uint i = n;WH(i < f.PO::m_SZ){df[i - n] = f[i] * coef;i++;(coef *= i) /= (i - n);}RE TRPO(f.m_N - n,MO(df));}TE TRPO TRDifferential(CO TRPO& f,CRUI N_output_start_plus_one){assert(f.m_N > 0);TRPO f_dif{f.m_N - 1};if(N_output_start_plus_one < f.PO::m_SZ){CO uint SZ = f.PO::m_SZ - 1;f_dif.PO::m_f = VE(SZ);for(uint i = N_output_start_plus_one;i < f.PO::m_SZ;i++){f_dif.PO::m_f[i-1] = f.PO::m_f[i] * i;}f_dif.PO::m_SZ = SZ;}RE f_dif;}TE IN TRPO Differential(CO TRPO& f){RE TRDifferential(f,1);}TE TRPO TRIntegral(CO TRPO& f,CRUI N_output_start){TRPO f_int{f.m_N + 1};if(N_output_start <= f.PO::m_SZ){CO uint SZ = f.PO::m_SZ + 1;f_int.PO::m_f = VE(SZ);for(uint i = N_output_start;i <= f.PO::m_SZ;i++){f_int.PO::m_f[i] = f.PO::m_f[i - 1] / T(i);}f_int.PO::m_SZ = SZ;}RE f_int;}TE IN TRPO Integral(CO TRPO& f){RE TRIntegral(f,1);}TE TRPO Inverse(CO TRPO& f){DF_OF_INVERSE_FOR_TR_PO(T,f_inv.TRMinus(f_inv.TRMU_CO(f,PW,PW_2).TRMU(f_inv,PW,PW_2),PW,PW_2));}TE TRPO Exp(CO TRPO& f){DF_OF_EXP_FOR_TR_PO(T,f_exp.TRMinus((TRIntegral(Differential(f_exp).TRMU_CO(Inverse(f_exp),PW - 1,PW_2),PW).TRMinus(f,PW,PW_2)).TRMU(f_exp,PW),PW,PW_2));}TE IN TRPO Log(CO TRPO& f){RE Integral(Differential(f) /= f);}TE IN TRPO PW(CO TRPO& f,CO T& t){RE Exp(Log(f) *= t);} TE IN PO::PO():m_f(),m_SZ(0){}TE IN PO::PO(CO T& t):PO(){if(t != CO_zero()){OP[](0) = t;}}TE IN PO::PO(T&& t):PO(){if(t != CO_zero()){OP[](0) = MO(t);}}TE TE IN PO::PO(CO Arg& n):PO(T(n)){}TE IN PO::PO(CO PO& f):m_f(f.m_f),m_SZ(f.m_SZ){}TE IN PO::PO(PO&& f):m_f(MO(f.m_f)),m_SZ(MO(f.m_SZ)){}TE IN PO::PO(CRUI i,CO T& t):PO(){if(t != CO_zero()){OP[](i) = t;}}TE IN PO::PO(CRUI i,T&& t):PO(){if(t != CO_zero()){OP[](i) = MO(t);}}TE TE IN PO::PO(CRUI i,CO Arg& n):PO(i,T(n)){}TE IN PO::PO(CO VE& f):m_f(f),m_SZ(m_f.SZ()){}TE IN PO::PO(VE&& f):m_f(MO(f)),m_SZ(m_f.SZ()){}TE IN PO& PO::OP=(CO T& t){m_f.clear();m_SZ = 0;OP[](0) = t;RE *TH;}TE IN PO& PO::OP=(T&& t){m_f.clear();m_SZ = 0;OP[](0) = MO(t);RE *TH;}TE TE IN PO& PO::OP=(CO Arg& n){RE OP=(T(n));}TE IN PO& PO::OP=(CO PO& f){m_f = f.m_f;m_SZ = f.m_SZ;RE *TH;}TE IN PO& PO::OP=(PO&& f){m_f = MO(f.m_f);m_SZ = MO(f.m_SZ);RE *TH;}TE IN PO& PO::OP=(CO VE& f){m_f = f;m_SZ = f.m_SZ;RE *TH;}TE IN PO& PO::OP=(VE&& f){m_f = MO(f);m_SZ = m_f.SZ();RE *TH;}TE CO T& PO::OP[](CRUI i) CO{if(m_SZ <= i){RE CO_zero();}RE m_f[i];}TE IN T& PO::OP[](CRUI i){if(m_SZ <= i){CO T& z = CO_zero();WH(m_SZ <= i){m_f.push_back(z);m_SZ++;}}RE m_f[i];}TE IN T PO::OP()(CO T& t) CO{RE MO((*TH % (PO(1,CO_one()) - t))[0]);}TE PO& PO::OP+=(CO PO& f){for(uint i = 0;i < f.m_SZ;i++){OP[](i) += f.m_f[i];}RE *TH;}TE PO& PO::OP-=(CO PO& f){for(uint i = 0;i < f.m_SZ;i++){OP[](i) -= f.m_f[i];}RE *TH;}TE PO& PO::OP*=(CO PO& f){if(m_SZ == 0){RE *TH;}if(f.m_SZ == 0){m_f.clear();m_SZ = 0;RE *TH;}CO uint SZ = m_SZ + f.m_SZ - 1;PO product{};for(uint i = 0;i < SZ;i++){T& product_i = product[i];CO uint j_min = m_SZ <= i?i - m_SZ + 1:0;CO uint j_lim = i < f.m_SZ?i + 1:f.m_SZ;for(uint j = j_min;j < j_lim;j++){product_i += m_f[i - j] * f.m_f[j];}}RE OP=(MO(product));}TE IN PO& PO::OP*=(PO&& f){RE OP*=(f);};TE PO& PO::OP/=(CO T& t){if(t == CO_one()){RE *TH;}CO T t_inv{CO_one() / t};for(uint i = 0;i < m_SZ;i++){OP[](i) *= t_inv;}RE *TH;}TE IN PO& PO::OP/=(CO PO& f){RE m_SZ < f.m_SZ?*TH:OP=(Quotient(*TH,f));}TE PO PO::Quotient(CO PO& f0,CO PO& f1){if(f0.m_SZ < f1.m_SZ){RE f0;}assert(f1.m_SZ > 0);CO uint f0_transpose_SZ = f0.m_SZ - f1.m_SZ + 1;CO uint f1_transpose_SZ = f0_transpose_SZ < f1.m_SZ?f0_transpose_SZ:f1.m_SZ;RE TransposeQuotient(f0,f0_transpose_SZ,Inverse(TRPO(f0_transpose_SZ,Transpose(f1,f1_transpose_SZ))),f1.m_SZ);}TE PO PO::TransposeQuotient(CO PO& f0,CRUI f0_transpose_SZ,CO PO& f1_transpose_inverse,CRUI f1_SZ){TRPO f0_transpose{f0_transpose_SZ,Transpose(f0,f0_transpose_SZ)};f0_transpose *= f1_transpose_inverse;for(uint d0 = (f0_transpose_SZ + 1) / 2;d0 < f0_transpose_SZ;d0++){::swap(f0_transpose.PO::m_f[d0],f0_transpose.PO::m_f[ f0_transpose_SZ - 1 - d0 ]);}RE f0_transpose;}TE PO PO::Transpose(CO PO& f,CRUI f_transpose_SZ){VE f_transpose(f_transpose_SZ);for(uint d = 0;d < f_transpose_SZ;d++){f_transpose[d] = f.m_f[f.m_SZ - 1 - d];}RE PO(MO(f_transpose));}TE PO& PO::OP%=(CO T& t){if(t == CO_one()){RE OP=(zero());}for(uint i = 0;i < m_SZ;i++){m_f[i] %= t;}RE *TH;}TE PO& PO::OP%=(CO PO& f){if(m_SZ >= f.m_SZ){OP-=((*TH / f) * f);ReMORedundantZero();}RE *TH;}TE IN PO PO::OP-() CO{RE MO(PO() -= *TH);}TE PO& PO::OP<<=(CO T& t){if(m_SZ > 0){for(uint d = 0;d < m_SZ;d++){m_f[d] *= T::Factorial(d);}TRPO exp_t_transpose{m_SZ * 2};T PW_t = CO_one();for(uint d = 0;d < m_SZ;d++){exp_t_transpose[m_SZ - 1 - d] = PW_t * T::FactorialInverse(d);PW_t *= t;}exp_t_transpose *= *TH;for(uint d = 0;d < m_SZ;d++){m_f[d] = exp_t_transpose.PO::m_f[d + m_SZ - 1] * T::FactorialInverse(d);}}RE *TH;}TE IN CO VE& PO::GetCoefficient() CO NE{RE m_f;}TE IN CRUI PO::SZ() CO NE{RE m_SZ;}TE IN VO PO::swap(PO& f){m_f.swap(f.m_f);swap(m_SZ,f.m_SZ);}TE IN VO PO::swap(VE& f){m_f.swap(f);m_SZ = m_f.SZ();}TE VO PO::ReMORedundantZero(){CO T& z = CO_zero();WH(m_SZ > 0?m_f[m_SZ - 1] == z:false){m_f.pop_back();m_SZ--;}RE;}TE string PO::Display() CO NE{string s = "(";if(m_SZ > 0){s += to_string(m_f[0]);for(uint i = 1;i < m_SZ;i++){s += "," + to_string(m_f[i]);}}s += ")";RE s;}TE IN CO PO& PO::zero(){ST CO PO z{};RE z;}TE IN CO T& PO::CO_zero(){ST CO T z{0};RE z;}TE IN CO T& PO::CO_one(){ST CO T o{1};RE o;}TE IN CO T& PO::CO_minus_one(){ST CO T m{-1};RE m;}TE bool OP==(CO PO& f0,CO T& t1){CRUI SZ = f0.SZ();CO T& zero = PO::CO_zero();for(uint i = 1;i < SZ;i++){if(f0[i] != zero){RE false;}}RE f0[0] == t1;}TE bool OP==(CO PO& f0,CO PO& f1){CRUI SZ0 = f0.SZ();CRUI SZ1 = f1.SZ();CRUI SZ = SZ0 < SZ1?SZ1:SZ0;for(uint i = 0;i < SZ;i++){if(f0[i] != f1[i]){RE false;}}RE true;}TE IN bool OP!=(CO PO& f0,CO P& f1){RE !(f0 == f1);}TE IN PO OP+(CO PO& f0,CO P& f1){RE MO(PO(f0) += f1);}TE IN PO OP-(CO PO& f){RE PO::zero() - f;}TE IN PO OP-(CO PO& f0,CO P& f1){RE MO(PO(f0) -= f1);}TE IN PO OP*(CO PO& f0,CO P& f1){RE MO(PO(f0) *= f1);}TE IN PO OP/(CO PO& f0,CO T& t1){RE MO(PO(f0) /= t1);}TE IN PO OP/(CO PO& f0,CO PO& f1){RE PO::Quotient(f0,f1);}TE IN PO OP%(CO PO& f0,CO P& f1){RE MO(PO(f0) %= f1);}TE PO OP<<(CO PO& f,CO T& t){RE MO(PO(f) <<= t);};TE TY V>T& Prod(V& f){if(f.empty()){f.push_back(T(1));}if(f.SZ() == 1){RE f.front();}auto IT = f.BE(),EN = f.EN();WH(IT != EN){T& t = *IT;IT++;if(IT != EN){t *= *IT;IT = f.erase(IT);}}RE Prod(f);} template class QuotientRing { protected: INT m_n; const INT* m_p_M; public: inline QuotientRing() noexcept; inline QuotientRing( const INT& n , const INT* const & p_M = nullptr ) noexcept; inline QuotientRing( const QuotientRing& n ) noexcept; inline QuotientRing& operator+=( const QuotientRing& n ) noexcept; inline QuotientRing& operator+=( const INT& n ) noexcept; // operator<が定義されていても負の数は正に直さず剰余を取ることに注意。 inline QuotientRing& operator-=( const QuotientRing& n ) noexcept; inline QuotientRing& operator-=( const INT& n ) noexcept; inline QuotientRing& operator*=( const QuotientRing& n ) noexcept; inline QuotientRing& operator*=( const INT& n ) noexcept; inline const INT& Represent() const noexcept; inline const INT& GetModulo() const noexcept; // m_nの正負やm_p_Mの一致込みの等号。 static inline bool Equal( const QuotientRing& n0 , const QuotientRing& n1 ) noexcept; template static QuotientRing Power( const QuotientRing& n , T exponent ); }; template inline bool operator==( const QuotientRing& n0 , const QuotientRing& n1 ) noexcept; template inline bool operator!=( const QuotientRing& n0 , const QuotientRing& n1 ) noexcept; template inline QuotientRing operator+( const QuotientRing& n0 , const T& n1 ) noexcept; template inline QuotientRing operator-( const QuotientRing& n0 , const T& n1 ) noexcept; template inline QuotientRing operator*( const QuotientRing& n0 , const T& n1 ) noexcept; template inline QuotientRing Power( const QuotientRing& n , T exponent ); template inline QuotientRing::QuotientRing() noexcept : m_n() , m_p_M( nullptr ) {} template inline QuotientRing::QuotientRing( const INT& n , const INT* const & p_M ) noexcept : m_n( p_M == nullptr ? n : n % *p_M ) , m_p_M( p_M ) {} template inline QuotientRing::QuotientRing( const QuotientRing& n ) noexcept : m_n( n.m_n ) , m_p_M( n.m_p_M ) {} template inline QuotientRing& QuotientRing::operator+=( const QuotientRing& n ) noexcept { if( m_p_M == nullptr ){ m_p_M = n.m_p_M; } m_n += n.m_n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template inline QuotientRing& QuotientRing::operator+=( const INT& n ) noexcept { m_n += n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template inline QuotientRing& QuotientRing::operator-=( const QuotientRing& n ) noexcept { if( m_p_M == nullptr ){ m_p_M = n.m_p_M; } m_n -= n.m_n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template inline QuotientRing& QuotientRing::operator-=( const INT& n ) noexcept { m_n -= n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template inline QuotientRing& QuotientRing::operator*=( const QuotientRing& n ) noexcept { if( m_p_M == nullptr ){ m_p_M = n.m_p_M; } m_n *= n.m_n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template inline QuotientRing& QuotientRing::operator*=( const INT& n ) noexcept { m_n *= n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template inline const INT& QuotientRing::Represent() const noexcept { return m_n; } template inline const INT& QuotientRing::GetModulo() const noexcept { static const INT zero{ 0 }; return m_p_M == nullptr ? zero : *m_p_M; } template inline bool QuotientRing::Equal( const QuotientRing& n0 , const QuotientRing& n1 ) noexcept { return n0.m_n == n1.m_n && n0.m_p_M == n1.m_p_M; } template template QuotientRing QuotientRing::Power( const QuotientRing& n , T exponent ) { QuotientRing answer{ 1 , n.m_p_M }; QuotientRing power{ n }; while( exponent != 0 ){ if( exponent % 2 == 1 ){ answer *= power; } power *= power; exponent /= 2; } return answer; } template inline bool operator==( const QuotientRing& n0 , const QuotientRing& n1 ) noexcept { return QuotientRing::Equal( n0 , n1 ); } template inline bool operator!=( const QuotientRing& n0 , const QuotientRing& n1 ) noexcept { return ! QuotientRing::Equal( n0 , n1 ); } template inline QuotientRing operator+( const QuotientRing& n0 , const T& n1 ) noexcept { return QuotientRing( n0 ).operator+=( n1 ); } template inline QuotientRing operator-( const QuotientRing& n0 , const T& n1 ) noexcept { return QuotientRing( n0 ).operator-=( n1 ); } template inline QuotientRing operator*( const QuotientRing& n0 , const T& n1 ) noexcept { return QuotientRing( n0 ).operator*=( n1 ); } template inline QuotientRing Power( const QuotientRing& n , T exponent ) { return QuotientRing::template Power( n , exponent ); } inline void Solve() { CEXPR( uint , bound_N , 1000 ); // 0が3個 CIN_ASSERT( N , 1 , bound_N ); CEXPR( ll , bound_P , 1000000000 ); // 0が9個 CIN_ASSERT( P , N , bound_P ); FOR( i , 2 , P ){ if( i * i >= P ){ break; } assert( P % i != 0 ); } if( N <= 3 ){ RETURN( N == 1 ? 1 : N == 2 ? 3 % P : 18 % P ); } FACTORIAL_MOD( fact , fact_inv , inv , N , bound_N + 1 , P ); using Q = QuotientRing; Q f[N + 1] = { 0 }; uint H = sqrt( N ); uint K = N / H; TRPO g_power[K] = { TRPO( N + 1 , Q( 1 , &P ) ) }; g_power[1].SetTruncation( N + 1 ); FOREQ( d , 1 , N ){ Q d_copy{ d , &P }; ( g_power[1][d] = f[d] = Power( d_copy , d == 1 ? 0 : d - 2 ) * fact_inv[d] ) *= d_copy; } FOR( k , 2 , K ){ g_power[k] = g_power[k-1] * g_power[1]; } TRPO g_power2[H + 1] = { g_power[0] , g_power[K - 1] * g_power[1] }; FOREQ( h , 2 , H ){ g_power2[h] = g_power2[h-1] * g_power2[1]; } Q answer{ 0 , &P }; uint k = 0; uint h = 0; uint n_max = N; TRPO fg_h{ N + 1 }; FOREQ( d , 0 , N ){ FOREQ( n , k , n_max ){ fg_h[n] += f[d] * g_power[k][n]; } if( ++k == K || d == N ){ k = 0; fg_h *= g_power2[h++]; answer += fg_h[N]; fg_h = TRPO( N + 1 ); n_max -= K; } } answer *= fact[N]; RETURN( answer.Represent() ); } REPEAT_MAIN(1);