import sys # sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) inf = -1-(-1 << 63) # md = 10**9+7 md = 998244353 from heapq import * def solve(): def binary_search(l, r, minimize): if minimize: l -= 1 else: r += 1 while l+1 < r: m = (l+r)//2 if ok(m) ^ minimize: l = m else: r = m if minimize: return r return l def ok(m): cnt = 0 for l, r in zip(ll, rr): cnt += max(min(r, m), l) if cnt > M: return False return True n, M = LI() ll = LI() rr = LI() if sum(ll) > n or sum(rr) < n: print(-1) return x = binary_search(0, 10**9, False) # print(x) s = 0 aa = [] for l, r in zip(ll, rr): if l > x: aa.append(l) s += l elif r < x: aa.append(r) s += r else: aa.append(x) s += x d = M-s ans = 0 for l, r, a in zip(ll, rr, aa): if a == x and d and r > a: a += 1 d -= 1 ans += (s-a)*a print(ans//2) for _ in range(II()): solve()