#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; template struct modint { private: unsigned int value; static constexpr int mod() {return m;} public: constexpr modint(const long long x = 0) noexcept { long long y = x; if(y < 0 || y >= mod()) { y %= mod(); if(y < 0) y += mod(); } value = (unsigned int)y; } constexpr unsigned int val() noexcept {return value;} constexpr modint &operator+=(const modint &other) noexcept { value += other.value; if(value >= mod()) value -= mod(); return *this; } constexpr modint &operator-=(const modint &other) noexcept { unsigned int x = value; if(x < other.value) x += mod(); x -= other.value; value = x; return *this; } constexpr modint &operator*=(const modint &other) noexcept { unsigned long long x = value; x *= other.value; value = (unsigned int) (x % mod()); return *this; } constexpr modint &operator/=(const modint &other) noexcept { return *this *= other.inverse(); } constexpr modint inverse() const noexcept { assert(value); long long a = value,b = mod(),x = 1,y = 0; while(b) { long long q = a/b; a -= q*b; swap(a,b); x -= q*y; swap(x,y); } return modint(x); } constexpr modint power(long long N) const noexcept { assert(N >= 0); modint p = *this,ret = 1; while(N) { if(N & 1) ret *= p; p *= p; N >>= 1; } return ret; } constexpr modint operator+() {return *this;} constexpr modint operator-() {return modint() - *this;} constexpr modint &operator++(int) noexcept {return *this += 1;} constexpr modint &operator--(int) noexcept {return *this -= 1;} friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs) += rhs;} friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs) -= rhs;} friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs) *= rhs;} friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs) /= rhs;} friend ostream &operator<<(ostream &os,const modint &x) {return os << x.value;} }; //using mint = modint<998244353>; using mint = modint<1000000007>; long long gcd(long long a,long long b) { while(b) {a %= b;swap(a,b);} return a; } #include vector> primefactorize(long long n) { vector> ret; for(long long p = 2;p*p <= n;p++) { if(n%p == 0) { int e = 0; while(n%p == 0) n /= p,e++; ret.push_back(make_pair(p,e)); } } if(n > 1) ret.push_back(make_pair(n,1)); return ret; } int N,K; map,mint> dp[2]; void solve() { cin >> N >> K; auto pf = primefactorize(K); int sz = (int)pf.size(); int cur = 0; vector s(sz,0); dp[cur][s] = 1; for(int i = 0;i < N;i++) { int nxt = 1-cur; dp[nxt].clear(); long long A; cin >> A; A = gcd(A,K); vector a(sz); for(int j = 0;j < sz;j++) while(A%pf[j].first == 0) A /= pf[j].first,a[j]++; for(auto it = dp[cur].begin();it != dp[cur].end();it++) { vector V = it->first; dp[nxt][V] += it->second; for(int j = 0;j < sz;j++) V[j] += a[j],V[j] = min(V[j],pf[j].second); dp[nxt][V] += it->second; } swap(cur,nxt); } vector g(sz); for(int i = 0;i < sz;i++) g[i] = pf[i].second; mint ans = dp[cur][g]; if(K == 1) ans--; cout << ans << endl; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int tt = 1; //cin >> tt; while(tt--) solve(); }