#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


mint TLE(int n, const vm& a) {
	mint res = 1;
	rep(i, n) repi(j, i + 1, n - 1) res *= a[i] - a[j];
	return res;
}


//【形式的冪級数】
/*
* MFPS() : O(1)
*	零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
*	定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
*	n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
*	f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
*	畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1)	f + g : O(n)
* f - c : O(1)			c - f, f - g, -f : O(n)
* c * f, f * c : O(n)	f * g : O(n log n)		f * g_sp : O(n k)(k : g の項数)
* f / c : O(n)			f / g : O(n log n)		f / g_sp : O(n k)(k : g の項数)
*	形式的冪級数としての和,差,積,商の結果を返す.
*	g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
*	制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
*	1 / f mod z^d を返す.
*	制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
*	多項式としての f を g で割った商,余り,商と余りの組を返す.
*	制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
*	多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d, mint c = 1) : O(d)
*	単項式 c z^d を返す.
*
* mint f.assign(mint c) : O(n)
*	多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
*	mod z^d をとる.
*
* f.resize() : O(n)
*	不要な高次の項を削る.
*
* f >> d, f << d : O(n)
*	係数列を d だけ右[左]シフトした多項式を返す.
*  (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*/
struct MFPS {
	using SMFPS = vector<pair<int, mint>>;

	int n; // 係数の個数(次数 + 1)
	vm c; // 係数列
	inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数

	// コンストラクタ(0,定数,係数列で初期化)
	MFPS() : n(0) {}
	MFPS(mint c0) : n(1), c({ c0 }) {}
	MFPS(int c0) : n(1), c({ mint(c0) }) {}
	MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
	MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }

	// 代入
	MFPS(const MFPS& f) = default;
	MFPS& operator=(const MFPS& f) = default;
	MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }

	// 比較
	bool operator==(const MFPS& g) const { return c == g.c; }
	bool operator!=(const MFPS& g) const { return c != g.c; }

	// アクセス
	inline mint const& operator[](int i) const { return c[i]; }
	inline mint& operator[](int i) { return c[i]; }

	// 次数
	int deg() const { return n - 1; }
	int size() const { return n; }

	static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
		// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci

		CONV = CONV_;
	}

	// 加算
	MFPS& operator+=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
		else {
			rep(i, n) c[i] += g.c[i];
			repi(i, n, g.n - 1)	c.push_back(g.c[i]);
			n = g.n;
		}
		return *this;
	}
	MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }

	// 定数加算
	MFPS& operator+=(const mint& sc) {
		if (n == 0) { n = 1; c = { sc }; }
		else { c[0] += sc; }
		return *this;
	}
	MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
	friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
	MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
	MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
	friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }

	// 減算
	MFPS& operator-=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
		else {
			rep(i, n) c[i] -= g.c[i];
			repi(i, n, g.n - 1) c.push_back(-g.c[i]);
			n = g.n;
		}
		return *this;
	}
	MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }

	// 定数減算
	MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
	MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
	friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
	MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
	MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
	friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }

	// 加法逆元
	MFPS operator-() const { return MFPS(*this) *= -1; }

	// 定数倍
	MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
	MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
	friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
	MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
	MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
	friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }

	// 右からの定数除算
	MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
	MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
	MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
	MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }

	// 積
	MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
	MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }

	// 除算
	MFPS inv(int d) const {
		// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series

		//【方法】
		// 1 / f mod z^d を求めることは,
		//		f g = 1 (mod z^d)
		// なる g を求めることである.
		// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
		//
		// d = 1 のときについては
		//		g = 1 / f[0] (mod z^1)
		// である.
		//
		// 次に,
		//		g = h (mod z^k)
		// が求まっているとして
		//		g mod z^(2 k)
		// を求める.最初の式を変形していくことで
		//		g - h = 0 (mod z^k)
		//		⇒ (g - h)^2 = 0 (mod z^(2 k))
		//		⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
		//		⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
		//		⇔ g - 2 h + f h^2 = 0 (mod z^(2 k))  (f g = 1 (mod z^d) より)
		//		⇔ g = (2 - f h) h (mod z^(2 k))
		// を得る.
		//
		// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.

		Assert(!c.empty());
		Assert(c[0] != 0);

		MFPS g(c[0].inv());
		for (int k = 1; k < d; k *= 2) {
			int len = max(min(2 * k, d), 1);
			MFPS tmp(0, len);
			rep(i, min(len, n)) tmp[i] = -c[i];	// -f
			tmp *= g;							// -f h
			tmp.resize(len);
			tmp[0] += 2;						// 2 - f h
			g *= tmp;							// (2 - f h) h
			g.resize(len);
		}

		return g;
	}
	MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
	MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }

	// 余り付き除算
	MFPS quotient(const MFPS& g) const {
		// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		//【方法】
		// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
		// f の次数は n - 1, g の次数は m - 1 とする.(n >= m)
		// 従って q の次数は n - m,r の次数は m - 2 となる.
		// 
		// f^R で f の係数列を逆順にした多項式を表す.すなわち
		//		f^R(x) := f(1/x) x^(n-1)
		// である.他の多項式も同様とする.
		//
		// 最初の式で x → 1/x と置き換えると,
		//		f(1/x) = g(1/x) q(1/x) + r(1/x)
		//		⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
		//		⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
		//		⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
		//		⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
		// 	    ⇒ q^R(x) = f^R(x) / g^R(x)  (mod x^(n-m+1))
		// を得る.
		// 	   
		// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
		// q の次数は n - m であったから,q 自身を正しく求めることができた.

		if (n < g.n) return MFPS();
		return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
	}
	MFPS reminder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		return (*this - this->quotient(g) * g).resize(g.n - 1);
	}
	pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		pair<MFPS, MFPS> res;
		res.first = this->quotient(g);
		res.second = (*this - res.first * g).resize(g.n - 1);
		return res;
	}

	// スパース積
	MFPS& operator*=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		mint g0 = 0;
		if (it0->first == 0) {
			g0 = it0->second;
			it0++;
		}

		// 後ろからインライン配る DP
		repir(i, n - 1, 0) {
			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] += c[i] * gj;
			}

			// 定数項は最後に配るか消去しないといけない.
			c[i] *= g0;
		}

		return *this;
	}
	MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }

	// スパース商
	MFPS& operator/=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		Assert(it0->first == 0 && it0->second != 0);
		mint g0_inv = it0->second.inv();
		it0++;

		// 前からインライン配る DP(後ろに累積効果あり)
		rep(i, n) {

			// 定数項は最初に配らないといけない.
			c[i] *= g0_inv;

			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] -= c[i] * gj;
			}
		}

		return *this;
	}
	MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }

	// 係数反転
	MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }

	// 単項式
	static MFPS monomial(int d, mint coef = 1) {
		MFPS mono(0, d + 1);
		mono[d] = coef;
		return mono;
	}

	// 不要な高次項の除去
	MFPS& resize() {
		// 最高次の係数が非 0 になるまで削る.
		while (n > 0 && c[n - 1] == 0) {
			c.pop_back();
			n--;
		}
		return *this;
	}

	// x^d 以上の項を除去する.
	MFPS& resize(int d) {
		n = d;
		c.resize(d);
		return *this;
	}

	// 不定元への代入
	mint assign(const mint& x) const {
		mint val = 0;
		repir(i, n - 1, 0) val = val * x + c[i];
		return val;
	}

	// 係数のシフト
	MFPS& operator>>=(int d) {
		n += d;
		c.insert(c.begin(), d, 0);
		return *this;
	}
	MFPS& operator<<=(int d) {
		n -= d;
		if (n <= 0) { c.clear(); n = 0; }
		else c.erase(c.begin(), c.begin() + d);
		return *this;
	}
	MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
	MFPS operator<<(int d) const { return MFPS(*this) <<= d; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const MFPS& f) {
		if (f.n == 0) os << 0;
		else {
			rep(i, f.n) {
				os << f[i] << "z^" << i;
				if (i < f.n - 1) os << " + ";
			}
		}
		return os;
	}
#endif
};


//【微分】O(n)
/*
* f'(z) を返す.
*/
MFPS derivative(const MFPS& f) {
	// verify : https://judge.yosupo.jp/problem/log_of_formal_power_series

	MFPS res;
	repi(i, 1, f.n - 1) res.c.push_back(f[i] * i);
	res.n = sz(res.c);
	return res;
}


//【一次式の積の展開(基本対称式)】O(n (log n)^2)
/*
* Πi∈[0..n) (z - x[i]) を返す.
*
* 戻り値の i 次の項の係数は,x[0..n) の符号付き n-i 次基本対称式になる.
*/
MFPS expand(const vm& x) {
	// verify : https://atcoder.jp/contests/abc231/tasks/abc231_g

	int n = sz(x);

	vector<MFPS> f(n);
	rep(i, n) f[i] = MFPS(vm({ -x[i], 1 }));

	// 2 冪個ずつ掛けていく(分割統治法)
	for (int k = 1; k < n; k *= 2) {
		for (int i = 0; i + k < n; i += 2 * k) {
			f[i] *= f[i + k];
		}
	}

	return f[0];
}


//【多点評価】O(m (log m)^2 + n log n)
/*
* n 次多項式 f(z) について,f(x[0..m)) の値を並べたリストを返す.
*/
vm multipoint_evaluation(const MFPS& f, const vm& x) {
	// 参考 : https://37zigen.com/multipoint-evaluation/
	// verify : https://judge.yosupo.jp/problem/multipoint_evaluation

//	dump(f); dump(x);

	int m = sz(x);
	int m2 = 1 << (msb(m - 1) + 1);

	// sp : (x - x[i]) の連続する 2 冪個の積からなる完全二分木
	vector<MFPS> sp(m2 * 2);
	repi(i, m2, m2 + m - 1) sp[i] = MFPS(vm({ -x[i - m2], 1 }));
	repi(i, m2 + m, 2 * m2 - 1) sp[i] = MFPS(1);
	repir(i, m2 - 1, 1) sp[i] = sp[2 * i] * sp[2 * i + 1];

	// sr : f を sp[i] で割った余りからなる完全二分木
	vector<MFPS> sr(m2 * 2);
	sr[1] = f.reminder(sp[1]);
	repi(i, 2, m2 + m - 1) sr[i] = sr[i / 2].reminder(sp[i]);

	// sr の葉は (x - x[i]) で割った余りなので,因数定理よりこれが f(x[i]) に等しい.
	vm y(m);
	rep(i, m) y[i] = sr[m2 + i][0];

	return y;
}


//【二次拡大体】
/*
* a + b √d ∈ F_p(√d) を表す.
*
* set_base(mint d) : O(1)
*	体を F_p(√d) とする(p = mint::mod)
*	制約:√d !∈ F_p
*
* QF() : O(1)
*	0 で初期化する.
*
* QF(mint a) : O(1)
*	a で初期化する.
*
* QF(mint a, mint b) : O(1)
*	a + b √d で初期化する.
*
* x + y, x - y, x * y : O(1)
*	和,差,積を返す.複合代入演算子も使用可.
*
* x / y : O(log p)
*	商を返す.複合代入演算子も使用可.
*
* QF inv() : O(log p)
*	逆元を返す.
*
* QF pow(ll n) : O(log n)
*	n 乗を返す.
*
* mint norm() : O(1)
*	a^2 - d b^2 を返す.
*/
struct QF {
	// a + b √d を表す.
	inline static mint d;
	mint a, b;

	// d を定める
	static void set_base(mint d_) {
		// verify : https://judge.yosupo.jp/problem/sqrt_mod

		d = d_;
	}

	// 初期化
	QF() : a(0), b(0) {}
	QF(const mint& a) : a(a), b(0) {}
	QF(const mint& a, const mint& b) : a(a), b(b) {
		// verify : https://judge.yosupo.jp/problem/sqrt_mod
	}
	QF(const int& a) : a(a), b(0) {}
	QF(const int& a, const int& b) : a(a), b(b) {}
	QF(const ll& a) : a(a), b(0) {}
	QF(const ll& a, const ll& b) : a(a), b(b) {}

	// 代入
	QF(const QF&) = default;
	QF& operator=(const QF&) = default;

	// 比較
	bool operator==(const QF& y) const { return a == y.a && b == y.b; }
	bool operator!=(const QF& y) const { return !(*this == y); }

	// 和
	QF& operator+=(const QF& y) {
		a += y.a; b += y.b;
		return *this;
	}
	QF operator+(const QF& y) const { QF x = *this; return x += y; }

	// 差
	QF& operator-=(const QF& y) {
		// verify : https://judge.yosupo.jp/problem/sqrt_mod

		a -= y.a; b -= y.b;
		return *this;
	}
	QF operator-(const QF& y) const { QF x = *this; return x -= y; }

	// 負元
	QF operator-() const { QF x = *this; x.a *= -1; x.b *= -1; return x; }

	// 積
	QF operator*(const QF& y) const {
		// verify : https://judge.yosupo.jp/problem/sqrt_mod

		// (a1 + b1√d)(a2 + b2√d) = (a1 a2 + b1 b2 d) + (a1 b2 + a2 b1)√d
		return QF(a * y.a + b * y.b * d, a * y.b + b * y.a);
	}
	QF& operator*=(const QF& y) { *this = *this * y; return *this; }

	// 逆元
	QF inv() const {
		// 1/(a + b√d) = (a - b√d) / (a^2 - b^2 d)
		mint dnm = (a * a - b * b * d).inv();
		return QF(a * dnm, -b * dnm);
	}

	// 商
	QF& operator/=(const QF& y) { return *this *= y.inv(); }
	QF operator/(const QF& y) const { return *this * y.inv(); }

	// 累乗
	QF pow(ll n) const {
		// verify : https://judge.yosupo.jp/problem/sqrt_mod

		QF res(1), pow2 = *this;
		while (n > 0) {
			if (n & 1) res *= pow2;
			pow2 *= pow2;
			n /= 2;
		}
		return res;
	}

	// ノルム
	mint norm() const {
		return a * a - d * b * b;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const QF& x) {
		os << x.a << "+" << x.b << "√" << x.d;
		return os;
	}
#endif
};


//【平方剰余】O(log p)
/*
* x^2 ≡ a (mod p) の解 x の 1 つを返す.(なければ -1)
*
* 制約:p = mint::mod() は素数
*
* 利用:【二次拡大体】
*/
int cipolla(const mint& a) {
	// 参考 : https://37zigen.com/cipolla-algorithm/
	// verify : https://judge.yosupo.jp/problem/sqrt_mod

	//【方法】
	// a ≡ 0 なら x ≡ 0 でよいから a ≠ 0 と仮定する.
	// p = 2 なら a^2 ≡ a (mod p) より x = a でよいから p は奇素数と仮定する.
	// 
	// オイラーの規準より
	//		a^((p-1)/2) ≡ 1 (mod p) ⇔ a が p を法とする平方剰余
	// である.解が存在しない場合はこれで判定できるので,以下解が存在すると仮定する.
	//
	// p = 3 (mod 4) の場合は,単に x = a^((p+1)/4) を返せば良い.実際,オイラーの規準より
	//		x^2 = a^((p+1)/2) = a * a^((p-1)/2) = a * 1 = a
	// となる.
	//
	// モニックな 2 次多項式 f(b; x) ∈ F_p[x] を
	//		f(b; x) = (x-b)^2 - b^2 + a
	// と定める.f(b; x) の根は
	//		x = b ± √(b^2 - a)
	// と表される.よって α = b^2 - a が平方非剰余であれば f(b; x) は F_p に根をもたず既約となる.
	// そのような b は十分多く存在するので,乱択とオイラーの規準による判定で素早く得ることができる.
	//
	// f(b; x) の 1 つの根 θ !∈ F_p を固定すると,
	// F_p(θ) ~= F_(p^2) におけるフロベニウス写像の性質より f(b; x) の全ての根は
	//		θ, θ^p
	// と表される.f(b; x) についての根と係数の関係より,定数項について
	//		θ θ^p ≡ [x^0] f(b; x) (mod p)
	//		⇔ θ^(1+p) ≡ a (mod p)
	// が成り立つ.p は奇素数より 1+p は偶数なので,
	//		θ^((1+p)/2) ∈ F_p
	// が求める a の平方根である.
	//
	// F_p(θ) = F_p(√(b^2 - a)) なので,この上で θ^((1+p)/2) を計算すればいい.

	// a ≡ 0 (mod p) の場合の例外処理 : O(1)
	if (a == 0) return 0;

	auto p = mint::mod();

	// p = 2 の場合の例外処理 : O(1)
	if (p == 2) return a.val();

	// a が平方非剰余なら -1 を返す. : O(log p)
	if (a.pow((p - 1) / 2) == -1) return -1;

	// p = 3 (mod 4) の場合は簡単に解決する. : O(log p)
	if (p % 4 == 3) return a.pow((p + 1) / 4).val();

	mt19937_64 mt((int)time(NULL));
	uniform_int_distribution<ll> rnd(2, p - 1);

	// b^2 - a が平方非剰余となる適当な b を見つける. : 平均 O(log p)
	mint b;
	while (true) {
		b = rnd(mt);
		if ((b * b - a).pow((p - 1) / 2) == -1) break;
	}

	// 二次拡大体 F_p(√b^2-a) を作る.
	QF::set_base(b * b - a);

	// θ = b + √(b^2 - a) とする.
	QF th(b, 1);

	// θ^((1+p)/2) ∈ F_p を返す. : O(log p)
	return th.pow((1 + p) / 2).a.val();
}


// 差積の 2 乗を計算して平方根をとる.確率 1/2 で正解する.
mint WA(int n, const vm& a) {
	auto f = expand(a);
	f = derivative(f);
	auto val = multipoint_evaluation(f, a);
	
	mint res = 1;
	repe(x, val) res *= x;
	res *= mint(-1).pow((ll)n * (n - 1) / 2);
	res = cipolla(res); // この中で乱数を使っている

	return res;
}


// 三角形を長方形に分割し,各長方形は 1次式の積 → 多点評価 で計算する.
// 1 回 5,913ms/6,000ms で AC できたが,もう一度提出したら TLE になった.
mint TLE2(int n, const vm& a) {
	function<mint(int, int)> rf = [&](int l, int r) {
		dump(l, r);
		if (l + 2 > r) return mint(1);
		if (l + 2 == r) return a[l] - a[l + 1];

		int m = (l + r) / 2;

		vm ar(a.begin() + m, a.begin() + r);
		auto f = expand(ar);
//		dump(f);

		vm al(a.begin() + l, a.begin() + m);
		auto muls = multipoint_evaluation(f, al);
//		dump(muls);

		mint res = 1;
		repe(mul, muls) res *= mul;

		res *= rf(l, m);
		res *= rf(m, r);

		return res;
	};

	return rf(0, n);
}


// いろいろ高速化
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")


// 三角形を長方形に分割し,各長方形は 1次式の積 → 多点評価 で計算する.
mint solve(int l, int r, const vm& a) {
	if (r - l <= 15) {
		mint res = 1;
		repi(i, l, r - 2) repi(j, i + 1, r - 1) res *= a[i] - a[j];

		return res;
	}

	int m = (l + r) / 2;

	vm ar(a.begin() + m, a.begin() + r);
	auto f = expand(ar);

	vm al(a.begin() + l, a.begin() + m);
	auto muls = multipoint_evaluation(f, al);

	mint res = 1;
	repe(mul, muls) res *= mul;

	res *= solve(l, m, a);
	res *= solve(m, r, a);

	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");
		
	int n;
	cin >> n;

	vm a(n);
	cin >> a;

	dump(TLE(n, a)); dump("---");

	if (n <= (int)1e5) {
		cout << solve(0, n, a) << endl;
	}
	else {
		cout << WA(n, a) << endl;
	}
}