#include using namespace std; using ll = long long; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< 1234567891 >; namespace FastFourierTransform { using real = long double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C &c) const { return C(x + c.x, y + c.y); } inline C operator-(const C &c) const { return C(x - c.x, y - c.y); } inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector< C > rts = { {0, 0}, {1, 0} }; vector< int > rev = {0, 1}; void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector< C > &a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) { int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector< int64_t > ret(need); for(int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; template< typename T > struct ArbitraryModConvolution { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) { if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < a.size(); i++) { fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15); } fft(fa, sz); vector< C > fb(sz); if(a == b) { fb = fa; } else { for(int i = 0; i < b.size(); i++) { fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector< T > ret(need); for(int i = 0; i < need; i++) { int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; #include #include using mint = atcoder::modint; ArbitraryModConvolution< modint > fft; vector conv(vectora,vectorb){ int n = a.size(); int m = b.size(); vector A(n),B(m); for(int i = 0;i res(n+m-1,0); for(int i = 0;i struct FPS:vector{ FPS(){} FPS(int n){ this->resize(n); } FPS(vectora){ *this = a; } FPS &operator+=(const FPS&r){ if(r.size()>this->size()) this->resize(r.size()); for(int i = 0;i<(int)r.size();i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint&r){ if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS&r){ if(r.size()>this->size()) this->resize(r.size()); for(int i = 0;i<(int)r.size();i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint&r){ if(this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const FPS&r){ vector nxt = conv(*this,r); this->resize(nxt.size()); for(int i = 0;isize();i++) (*this)[i] *= r; return *this; } FPS operator+(const FPS&r) const {return FPS(*this)+=r;} FPS operator+(const mint&r) const {return FPS(*this)+=r;} FPS operator-(const FPS&r) const {return FPS(*this)-=r;} FPS operator-(const mint&r) const {return FPS(*this)-=r;} FPS operator*(const FPS&r) const {return FPS(*this)*=r;} void print(){ for(int i = 0;i<(int)this->size();i++){ if(i) cout<<" "; cout<<(*this)[i]; } cout<size()-1;} // f^-1 mod x^n FPS inv(int n){ assert((*this)[0].val()!=0); FPS g(1); g[0] = 1/(*this)[0]; ll now = 1; FPS tmp(1); tmp[0] = 2; while(nownow) g.resize(now); } g.resize(n); return g; } FPS diff(){ FPSg(this->size()-1); for(int i = 0;i+1size();i++) g[i] = mint(i+1) * (*this)[i+1]; return g; } FPS integral(){ FPSg(this->size()+1); g[0] = 0; for(int i = 1;i<=this->size();i++) g[i] = (*this)[i-1] / mint(i); return g; } FPS log(int n){ assert((*this)[0].val()==1); return ((*this).diff() * (*this).inv(n-1)).integral(); } FPS exp(int n){ assert((*this)[0].val()==0); FPS g(1); g[0] = 1; ll now = 1; FPS tmp(1); tmp[0] = 1; while(nownow) g.resize(now); } return g; } }; template < typename mint > FPS pow(FPS&a,ll k,int n){ FPS ans(n+1); ans[0] += 1; FPS tmp = a; tmp.resize(n+1); while(k){ if(k&1){ ans *= tmp; ans.resize(n+1); } tmp *= tmp; tmp.resize(n+1); k>>=1; } return ans; } //[x^n] P(x)/Q(x) template< typename mint > mint Bostan_Mori(FPS&p,FPS&q,ll n){ if(n==0) return p[0]; int d = q.deg(); assert(p.deg() qi = q; for(int i = 0;i FPS all_mul(vector>&fs){ while(true){ int n = fs.size(); if(n==1) break; int m = (n+1)/2; for(int i = 0;i>n>>m; vector> fs; for(int i = 0;i>a; FPS g(a+1); g[0] = 1; g[a] = -1; fs.push_back(g); } auto f = all_mul(fs); FPS g(1); g[0] = 1; cout<