#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include template struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt& operator+=(const ModInt& p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt& operator-=(const ModInt& p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt& operator*=(const ModInt& p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt& operator/=(const ModInt& p) { *this *= p.inverse(); return *this; } ModInt& operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt& p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt& p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt& p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt& p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt& p) const { return x == p.x; } bool operator!=(const ModInt& p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream& operator<<(std::ostream& os, const ModInt& p) { return os << p.x; } friend std::istream& operator>>(std::istream& is, ModInt& a) { long long x; is >> x; a = ModInt(x); return (is); } }; template struct SegmentTree { using Monoid = typename T::Monoid; explicit SegmentTree(int n) : SegmentTree(std::vector(n, T::id())) {} explicit SegmentTree(const std::vector& a) : n(a.size()), sz(1) { while (sz < n) sz <<= 1; data.assign(sz << 1, T::id()); std::copy(a.begin(), a.end(), data.begin() + sz); for (int i = sz - 1; i > 0; --i) { data[i] = T::merge(data[i << 1], data[(i << 1) + 1]); } } void set(int idx, const Monoid val) { idx += sz; data[idx] = val; while (idx >>= 1) data[idx] = T::merge(data[idx << 1], data[(idx << 1) + 1]); } Monoid get(int left, int right) const { Monoid res_l = T::id(), res_r = T::id(); for (left += sz, right += sz; left < right; left >>= 1, right >>= 1) { if (left & 1) res_l = T::merge(res_l, data[left++]); if (right & 1) res_r = T::merge(data[--right], res_r); } return T::merge(res_l, res_r); } Monoid operator[](const int idx) const { return data[idx + sz]; } private: const int n; int sz; // sz + 原数组坐标 = 线段树里的编号,1 based std::vector data; }; namespace monoid { template struct RangeMinimumQuery { using Monoid = T; static constexpr Monoid id() { return std::numeric_limits::max(); } static Monoid merge(const Monoid& a, const Monoid& b) { return std::min(a, b); } }; template struct RangeMaximumQuery { using Monoid = T; static constexpr Monoid id() { return std::numeric_limits::lowest(); } static Monoid merge(const Monoid& a, const Monoid& b) { return std::max(a, b); } }; template struct RangeSumQuery { using Monoid = T; static constexpr Monoid id() { return 0; } static Monoid merge(const Monoid& a, const Monoid& b) { return a + b; } }; template struct RangeOrQuery { using Monoid = T; static constexpr Monoid id() { return 0; } static Monoid merge(const Monoid& a, const Monoid& b) { return a | b; } }; } // namespace monoid template struct DSU { std::vector f, siz; DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); } T leader(T x) { while (x != f[x]) x = f[x] = f[f[x]]; return x; } bool same(T x, T y) { return leader(x) == leader(y); } bool merge(T x, T y) { x = leader(x); y = leader(y); if (x == y) return false; siz[x] += siz[y]; f[y] = x; return true; } T size(int x) { return siz[leader(x)]; } }; bool isPrime(long long number) { if (number != 2) { if (number < 2 || number % 2 == 0) { return false; } for (int i = 3; (i * i) <= number; i += 2) { if (number % i == 0) { return false; } } } return true; } std::pair, std::vector> get_prime_factor_with_kinds( int n) { std::vector prime_factors; std::vector cnt; // number of i_th factor for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { prime_factors.push_back(i); cnt.push_back(0); while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++; } } if (n > 1) prime_factors.push_back(n), cnt.push_back(1); assert(prime_factors.size() == cnt.size()); return {prime_factors, cnt}; } template struct FenwickTree { std::vector bit; int n; FenwickTree(int _n) : n(_n), bit(_n) {} T sum(int r) { int ret = 0; for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r]; return ret; } T sum(int l, int r) { assert(l <= r); return sum(r) - sum(l - 1); } // [l, r] void add(int idx, int delta) { for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta; } }; using mint = ModInt<998244353>; const int MOD = 998244353; struct MComb { std::vector fact; std::vector inversed; MComb(int n) { // O(n+log(mod)) fact = std::vector(n + 1, 1); for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i); inversed = std::vector(n + 1); inversed[n] = fact[n] ^ (MOD - 2); for (int i = n - 1; i >= 0; i--) inversed[i] = inversed[i + 1] * mint(i + 1); } mint ncr(int n, int r) { if (n < r) return 0; return (fact[n] * inversed[r] * inversed[n - r]); } mint npr(int n, int r) { return (fact[n] * inversed[n - r]); } mint nhr(int n, int r) { assert(n + r - 1 < (int)fact.size()); return ncr(n + r - 1, r); } }; mint ncr(int n, int r) { mint res = 1; for (int i = n - r + 1; i <= n; i++) res *= i; for (int i = 1; i <= r; i++) res /= i; return res; } void solve() { int h, w; std::cin >> h >> w; std::vector b(h, std::vector(w)); for (int i = 0; i < h; i++) { for (int& j : b[i]) { std::cin >> j; } } bool swapped = false; if (h < w) std::swap(h, w), swapped = true; std::vector g(h, std::vector(w)); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { if (swapped) { g[i][j] = b[j][i]; } else g[i][j] = b[i][j]; } } long long ans = 0; std::vector row(h), col(w); for (int i = 0; i < h; i++) { long long sum = 0; for (int j = 0; j < w; j++) { sum += g[i][j]; } row[i] = sum; } for (int j = 0; j < w; j++) { long long sum = 0; for (int i = 0; i < h; i++) { sum += g[i][j]; } col[j] = sum; } int x = 0, y = w - 1; while (x < h and y >= 0) { int i = x, j = y; long long sum = 0; std::vector a(h), b(w); while (i >= 0 and j >= 0) { sum += g[i][j]; a[i] = g[i][j]; b[j] = g[i][j]; i--, j--; } if (x < h - 1) { x++; } else if (x == h - 1) { y--; } for (int i = 0; i < h; i++) { ans = std::max(ans, sum + row[i] - a[i]); } for (int j = 0; j < w; j++) { ans = std::max(ans, sum + col[j] - b[j]); } } x = h - 1, y = w - 1; while (x >= 0 and y >= 0) { int i = x, j = y; long long sum = 0; std::vector a(h), b(w); while (i >= 0 and j < w) { sum += g[i][j]; a[i] = g[i][j]; b[j] = g[i][j]; i--, j++; } if (y > 0) { y--; } else if (y == 0) { x--; } for (int i = 0; i < h; i++) { ans = std::max(ans, sum + row[i] - a[i]); } for (int j = 0; j < w; j++) { ans = std::max(ans, sum + col[j] - b[j]); } } for (int i = 0; i < h; i++) { for (int j = i + 1; i < h; i++) { ans = std::max(ans, row[i] + row[j]); } } for (int j = 0; j < w; j++) { for (int i = j + 1; i < w; i++) { ans = std::max(ans, col[i] + col[j]); } } std::cout << ans << '\n'; } int main() { int t = 1; // std::cin >> t; while (t--) solve(); }