// #define _GLIBCXX_DEBUG #include // clang-format off std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os< #define MEMBER_MACRO(member, Dummy, name, type1, type2, last) \ template struct name##member { \ template static type1 check(U *); \ static type2 check(...); \ static tClass *mClass; \ last; \ }; #define HAS_CHECK(member, Dummy) MEMBER_MACRO(member, Dummy, has_, std::true_type, std::false_type, static const bool value= decltype(check(mClass))::value) #define HAS_MEMBER(member) HAS_CHECK(member, int dummy= (&U::member, 0)) #define HAS_TYPE(member) HAS_CHECK(member, class dummy= typename U::member) #define HOGE_OR(member, name, type2) \ MEMBER_MACRO(member, class dummy= typename U::member, name, typename U::member, type2, using type= decltype(check(mClass))) \ template using name##member##_t= typename name##member::type; #define NULLPTR_OR(member) HOGE_OR(member, nullptr_or_, std::nullptr_t); #define MYSELF_OR(member) HOGE_OR(member, myself_or_, tClass); template static constexpr bool tuple_like_v= false; template static constexpr bool tuple_like_v> = true; template static constexpr bool tuple_like_v> = true; template static constexpr bool tuple_like_v> = true; template auto to_tuple(const T &t) { if constexpr (tuple_like_v) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t); } template auto forward_tuple(const T &t) { if constexpr (tuple_like_v) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t); } template static constexpr bool array_like_v= false; template static constexpr bool array_like_v> = true; template static constexpr bool array_like_v> = std::is_convertible_v; template static constexpr bool array_like_v> = true; template static constexpr bool array_like_v> = array_like_v> && std::is_convertible_v; template auto to_array(const T &t) { if constexpr (array_like_v) return std::apply([](auto &&...x) { return std::array{x...}; }, t); } template using to_tuple_t= decltype(to_tuple(T())); template using to_array_t= decltype(to_array(T())); template struct other_than_first_argument_type_impl { using type= void; }; template struct other_than_first_argument_type_impl> { using type= std::tuple; }; template using other_than_first_argument_type_t= typename other_than_first_argument_type_impl::type; // clang-format off templatestruct make_long{using type= T;}; template<>struct make_long{using type= int16_t;}; template<>struct make_long{using type= uint16_t;}; template<>struct make_long{using type= int32_t;}; template<>struct make_long{using type= uint32_t;}; template<>struct make_long{using type= int64_t;}; template<>struct make_long{using type= uint64_t;}; template<>struct make_long{using type= __int128_t;}; template<>struct make_long{using type= __uint128_t;}; template<>struct make_long{using type= double;}; template<>struct make_long{using type= long double;}; template using make_long_t= typename make_long::type; // clang-format on namespace kdtree_internal { template class KDTreeImpl {}; template class KDTreeImpl, std::tuple> { HAS_MEMBER(op); HAS_MEMBER(ti); HAS_MEMBER(mp); HAS_MEMBER(cp); HAS_TYPE(T); HAS_TYPE(E); MYSELF_OR(T); NULLPTR_OR(E); using Sec= std::array; using Pos= std::array; using Range= std::array; using long_pos_t= make_long_t; template static constexpr bool monoid_v= std::conjunction_v, has_op, has_ti>; template static constexpr bool dual_v= std::conjunction_v, has_E, has_mp, has_cp>; struct Node_BB { int ch[2]= {-1, -1}; Pos pos; pos_t range[K][2]; }; template struct Node_B: Node_BB { U val; }; template struct Node_D: Node_B {}; template struct Node_D: Node_BB {}; template struct Node_D: Node_B { typename M::T sum; }; template struct Node_D: Node_B { typename M::E laz; bool laz_flg= false; }; template struct Node_D: Node_B { typename M::T sum; typename M::E laz; bool laz_flg= false; }; using Node= Node_D, dual_v>; using Iter= typename std::vector::iterator; using T= std::conditional_t, std::nullptr_t, myself_or_T_t>; using E= nullptr_or_E_t; template using canbe_Pos= std::is_convertible, std::tuple>; template using canbe_PosV= std::is_convertible, std::tuple>; template static constexpr bool canbe_Pos_and_T_v= std::conjunction_v, std::is_convertible>; std::vector ns; static inline T def_val() { if constexpr (monoid_v) return M::ti(); else return T(); } template static inline auto get_(const P &p) { if constexpr (z == 0) return std::get(p); else return std::get(p.first); } template Range to_range(const P &p, std::index_sequence) { return {(assert(std::get(p) <= std::get(p)), Sec{std::get(p), std::get(p)})...}; } inline void update(int t) { ns[t].sum= ns[t].val; if (ns[t].ch[0] != -1) ns[t].sum= M::op(ns[t].sum, ns[ns[t].ch[0]].sum); if (ns[t].ch[1] != -1) ns[t].sum= M::op(ns[t].sum, ns[ns[t].ch[1]].sum); } inline void propagate(int t, const E &x) { if (t == -1) return; if (ns[t].laz_flg) M::cp(ns[t].laz, x); else ns[t].laz= x, ns[t].laz_flg= true; M::mp(ns[t].val, x); if constexpr (monoid_v) M::mp(ns[t].sum, x); } inline void push(int t) { if (ns[t].laz_flg) ns[t].laz_flg= false, propagate(ns[t].ch[0], ns[t].laz), propagate(ns[t].ch[1], ns[t].laz); } template inline void set_range(int t, int m, Iter bg, Iter ed, const P *p) { auto [mn, mx]= std::minmax_element(bg, ed, [&](int a, int b) { return get_(p[a]) < get_(p[b]); }); ns[t].range[k][0]= get_(p[*mn]), ns[t].range[k][1]= get_(p[*mx]), ns[t].pos[k]= get_(p[m]); } template inline void set_range_lp(int t, int m, Iter bg, Iter ed, const P *p, std::index_sequence) { (void)(int[]){(set_range(t, m, bg, ed, p), 0)...}; } template inline int build(int &ts, Iter bg, Iter ed, const P *p, const T &v= def_val()) { if (bg == ed) return -1; auto md= bg + (ed - bg) / 2; int t= ts++; std::nth_element(bg, md, ed, [&](int a, int b) { return get_(p[a]) < get_(p[b]); }), set_range_lp(t, *md, bg, ed, p, std::make_index_sequence()); if constexpr (z == 0) { if constexpr (!std::is_void_v) { if constexpr (std::tuple_size_v

== K + 1) ns[t].val= std::get(p[*md]); else ns[t].val= v; } } else ns[t].val= p[*md].second; static constexpr uint8_t nx= div + 1 == K ? 0 : div + 1; ns[t].ch[0]= build(ts, bg, md, p, v), ns[t].ch[1]= build(ts, md + 1, ed, p, v); if constexpr (monoid_v) update(t); return t; } template inline int build(Iter bg, Iter ed, const P *p, int &ts) { if (bg == ed) return -1; auto md= bg + (ed - bg) / 2; int t= ts++; std::nth_element(bg, md, ed, [&](int a, int b) { return get_(p[a]) < get_(p[b]); }), set_range_lp(t, bg, ed, p, std::make_index_sequence()); if constexpr (z == 0) { if constexpr (!std::is_void_v) { if constexpr (std::tuple_size_v

== K + 1) ns[t].val= std::get(p[t]); else ns[t].val= def_val(); } } else ns[t].val= p[t].second; static constexpr uint8_t nx= div + 1 == K ? 0 : div + 1; ns[t].ch[0]= build(bg, md, p, ts), ns[t].ch[1]= build(md + 1, ed, p, ts); if constexpr (monoid_v) update(t); return t; } static inline auto in_cuboid(const Range &r) { return [r](const Pos &pos) { for (uint8_t k= K; k--;) if (r[k][1] < pos[k] || pos[k] < r[k][0]) return false; return true; }; } static inline auto out_cuboid(const Range &r) { return [r](const pos_t rr[K][2]) { for (uint8_t k= K; k--;) if (rr[k][1] < r[k][0] || r[k][1] < rr[k][0]) return true; return false; }; } static inline auto inall_cuboid(const Range &r) { return [r](const pos_t rr[K][2]) { for (uint8_t k= K; k--;) if (rr[k][0] < r[k][0] || r[k][1] < rr[k][1]) return false; return true; }; } static inline long_pos_t min_dist2(const pos_t r[K][2], const Pos &pos) { long_pos_t d2= 0, dx; for (uint8_t k= K; k--;) dx= std::clamp(pos[k], r[k][0], r[k][1]) - pos[k], d2+= dx * dx; return d2; } static inline auto in_ball(const Pos &c, long_pos_t r2) { return [c, r2](const Pos &pos) { long_pos_t d2= 0, dx; for (uint8_t k= K; k--;) dx= pos[k] - c[k], d2+= dx * dx; return d2 <= r2; }; } static inline auto inall_ball(const Pos &c, long_pos_t r2) { return [c, r2](const pos_t rr[K][2]) { long_pos_t d2= 0, dx0, dx1; for (uint8_t k= K; k--;) dx0= rr[k][0] - c[k], dx1= rr[k][1] - c[k], d2+= std::max(dx0 * dx0, dx1 * dx1); return d2 <= r2; }; } static inline auto out_ball(const Pos &c, long_pos_t r2) { return [c, r2](const pos_t r[K][2]) { return min_dist2(r, c) > r2; }; } inline void nns(int t, const Pos &pos, std::pair &ret) const { if (t == -1) return; long_pos_t d2= min_dist2(ns[t].range, pos); if (ret.first != -1 && d2 >= ret.second) return; long_pos_t dx= d2= 0; for (uint8_t k= K; k--;) dx= pos[k] - ns[t].pos[k], d2+= dx * dx; if (ret.first == -1 || d2 < ret.second) ret= {t, d2}; bool f= 0; if (auto [l, r]= ns[t].ch; l != -1 && r != -1) f= min_dist2(ns[l].range, pos) > min_dist2(ns[r].range, pos); nns(ns[t].ch[f], pos, ret), nns(ns[t].ch[!f], pos, ret); } template inline void col(int t, const In &in, const Out &out, std::vector &ret) const { if (t == -1 || out(ns[t].range)) return; if (in(ns[t].pos)) ret.push_back(ns[t].val); col(ns[t].ch[0], in, out, ret), col(ns[t].ch[1], in, out, ret); } template inline T fld(int t, const In &in, const InAll &inall, const Out &out) { if (t == -1 || out(ns[t].range)) return def_val(); if (inall(ns[t].range)) return ns[t].sum; if constexpr (dual_v) push(t); T ret= M::op(fld(ns[t].ch[0], in, inall, out), fld(ns[t].ch[1], in, inall, out)); return in(ns[t].pos) ? M::op(ret, ns[t].val) : ret; } template inline void app(int t, const In &in, const InAll &inall, const Out &out, const E &x) { if (t == -1 || out(ns[t].range)) return; if (inall(ns[t].range)) return propagate(t, x); if (push(t); in(ns[t].pos)) M::mp(ns[t].val, x); app(ns[t].ch[0], in, inall, out, x), app(ns[t].ch[1], in, inall, out, x); if constexpr (monoid_v) update(t); } inline bool set(int t, const Pos &pos, const T &x) { if (t == -1) return false; bool isok= true; for (uint8_t k= K; k--; isok&= pos[k] == ns[t].pos[k]) if (ns[t].range[k][1] < pos[k] || pos[k] < ns[t].range[k][0]) return false; if constexpr (dual_v) push(t); if (isok) ns[t].val= x; else if (!(isok= set(ns[t].ch[0], pos, x))) isok= set(ns[t].ch[1], pos, x); if constexpr (monoid_v) if (isok) update(t); return isok; } inline std::pair get(int t, const Pos &pos) { if (t == -1) return {T(), false}; bool myself= true; for (uint8_t k= K; k--; myself&= pos[k] == ns[t].pos[k]) if (ns[t].range[k][1] < pos[k] || pos[k] < ns[t].range[k][0]) return {T(), false}; if (myself) return {ns[t].val, true}; if constexpr (dual_v) push(t); auto ret= get(ns[t].ch[0], pos); return !ret.second ? get(ns[t].ch[1], pos) : ret; } public: template , canbe_PosV

>>> KDTreeImpl(const P *p, size_t n): ns(n) { std::vector ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<0, 0>(ts, ids.begin(), ids.end(), p); } template , canbe_PosV

>>> KDTreeImpl(const std::vector

&p): KDTreeImpl(p.data(), p.size()) {} template ::value>> KDTreeImpl(const std::set

&p): KDTreeImpl(std::vector(p.begin(), p.end())) {} template >> KDTreeImpl(const P *p, size_t n, U v): ns(n) { std::vector ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<0, 0>(ts, ids.begin(), ids.end(), p, v); } template >> KDTreeImpl(const std::vector

&p, U v): KDTreeImpl(p.data(), p.size(), v) {} template >> KDTreeImpl(const std::set

&p, U v): KDTreeImpl(std::vector(p.begin(), p.end()), v) {} template >> KDTreeImpl(const std::pair *p, size_t n): ns(n) { std::vector ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<1, 0>(ts, ids.begin(), ids.end(), p); } template >> KDTreeImpl(const std::vector> &p): KDTreeImpl(p.data(), p.size()) {} template >> KDTreeImpl(const std::map &p): KDTreeImpl(std::vector(p.begin(), p.end())) {} std::vector enum_cuboid(PK2... xs) { static_assert(!std::is_void_v, "\"enum_cuboid\" is not available"); std::vector ret; auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence()); return col(0, in_cuboid(r), out_cuboid(r), ret), ret; } std::vector enum_ball(PK... xs, pos_t r) const { static_assert(!std::is_void_v, "\"enum_ball\" is not available"); std::vector ret; long_pos_t r2= long_pos_t(r) * r; return col(0, in_ball({xs...}, r2), out_ball({xs...}, r2), ret), ret; } T fold_cuboid(PK2... xs) { static_assert(monoid_v, "\"fold_cuboid\" is not available"); auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence()); return fld(0, in_cuboid(r), inall_cuboid(r), out_cuboid(r)); } T fold_ball(PK... xs, pos_t r) { static_assert(monoid_v, "\"fold_ball\" is not available"); long_pos_t r2= long_pos_t(r) * r; return fld(0, in_ball({xs...}, r2), inall_ball({xs...}, r2), out_ball({xs...}, r2)); } void apply_cuboid(PK2... xs, E x) { static_assert(dual_v, "\"apply_cuboid\" is not available"); auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence()); app(0, in_cuboid(r), inall_cuboid(r), out_cuboid(r), x); } void apply_ball(PK... xs, pos_t r, E x) { static_assert(dual_v, "\"apply_ball\" is not available"); long_pos_t r2= long_pos_t(r) * r; app(0, in_ball({xs...}, r2), inall_ball({xs...}, r2), out({xs...}, r2), x); } void set(PK... p, T v) { assert(set(0, {p...}, v)); } T get(PK... p) { auto [ret, flg]= get(0, {p...}); return assert(flg), ret; } Pos nearest_neighbor(PK... p) const { assert(ns.size()); std::pair ret= {-1, -1}; return nns(0, {p...}, ret), ns[ret.first].pos; } }; template using KDTree= KDTreeImpl>, to_tuple_t>>; } using kdtree_internal::KDTree; template constexpr inline Int mod_inv(Int a, Int mod) { static_assert(std::is_signed_v); Int x= 1, y= 0, b= mod; for (Int q= 0, z= 0; b;) z= x, x= y, y= z - y * (q= a / b), z= a, a= b, b= z - b * q; return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod; } namespace math_internal { using namespace std; using u8= uint8_t; using u32= uint32_t; using u64= uint64_t; using i64= int64_t; using u128= __uint128_t; #define CE constexpr #define IL inline #define NORM \ if (n >= mod) n-= mod; \ return n #define PLUS(U, M) \ CE IL U plus(U l, U r) const { \ if (l+= r; l >= M) l-= M; \ return l; \ } #define DIFF(U, C, M) \ CE IL U diff(U l, U r) const { \ if (l-= r; l >> C) l+= M; \ return l; \ } #define SGN(U) \ static CE IL U set(U n) { return n; } \ static CE IL U get(U n) { return n; } \ static CE IL U norm(U n) { return n; } template struct MP_Mo { u_t mod; CE MP_Mo(): mod(0), iv(0), r2(0) {} CE MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {} CE IL u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); } PLUS(u_t, mod << 1) DIFF(u_t, A, mod << 1) CE IL u_t set(u_t n) const { return mul(n, r2); } CE IL u_t get(u_t n) const { n= reduce(n); NORM; } CE IL u_t norm(u_t n) const { NORM; } private: u_t iv, r2; static CE u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; } CE IL u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); } }; struct MP_Na { u32 mod; CE MP_Na(): mod(0){}; CE MP_Na(u32 m): mod(m) {} CE IL u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) }; struct MP_Br { // mod < 2^31 u32 mod; CE MP_Br(): mod(0), s(0), x(0) {} CE MP_Br(u32 m): mod(m), s(95 - __builtin_clz(m - 1)), x(((u128(1) << s) + m - 1) / m) {} CE IL u32 mul(u32 l, u32 r) const { return rem(u64(l) * r); } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) private: u8 s; u64 x; CE IL u64 quo(u64 n) const { return (u128(x) * n) >> s; } CE IL u32 rem(u64 n) const { return n - quo(n) * mod; } }; struct MP_Br2 { // 2^20 < mod <= 2^41 u64 mod; CE MP_Br2(): mod(0), x(0) {} CE MP_Br2(u64 m): mod(m), x((u128(1) << 84) / m) {} CE IL u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); } PLUS(u64, mod << 1) DIFF(u64, 63, mod << 1) static CE IL u64 set(u64 n) { return n; } CE IL u64 get(u64 n) const { NORM; } CE IL u64 norm(u64 n) const { NORM; } private: u64 x; CE IL u128 quo(const u128 &n) const { return (n * x) >> 84; } CE IL u64 rem(const u128 &n) const { return n - quo(n) * mod; } }; struct MP_D2B1 { u8 s; u64 mod, d, v; CE MP_D2B1(): s(0), mod(0), d(0), v(0) {} CE MP_D2B1(u64 m): s(__builtin_clzll(m)), mod(m), d(m << s), v(u128(-1) / d) {} CE IL u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; } PLUS(u64, mod) DIFF(u64, 63, mod) SGN(u64) private: CE IL u64 rem(const u128 &u) const { u128 q= (u >> 64) * v + u; u64 r= u64(u) - (q >> 64) * d - d; if (r > u64(q)) r+= d; if (r >= d) r-= d; return r; } }; template CE u_t pow(u_t x, u64 k, const MP &md) { for (u_t ret= md.set(1);; x= md.mul(x, x)) if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret; } #undef NORM #undef PLUS #undef DIFF #undef SGN #undef CE } namespace math_internal { struct m_b {}; struct s_b: m_b {}; } template constexpr bool is_modint_v= std::is_base_of_v; template constexpr bool is_staticmodint_v= std::is_base_of_v; namespace math_internal { #define CE constexpr template struct SB: s_b { protected: static CE MP md= MP(MOD); }; template struct MInt: public B { using Uint= U; static CE inline auto mod() { return B::md.mod; } CE MInt(): x(0) {} template && !is_same_v, nullptr_t> = nullptr> CE MInt(T v): x(B::md.set(v.val() % B::md.mod)) {} CE MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {} CE MInt operator-() const { return MInt() - *this; } #define FUNC(name, op) \ CE MInt name const { \ MInt ret; \ ret.x= op; \ return ret; \ } FUNC(operator+(const MInt& r), B::md.plus(x, r.x)) FUNC(operator-(const MInt& r), B::md.diff(x, r.x)) FUNC(operator*(const MInt& r), B::md.mul(x, r.x)) FUNC(pow(u64 k), math_internal::pow(x, k, B::md)) #undef FUNC CE MInt operator/(const MInt& r) const { return *this * r.inv(); } CE MInt& operator+=(const MInt& r) { return *this= *this + r; } CE MInt& operator-=(const MInt& r) { return *this= *this - r; } CE MInt& operator*=(const MInt& r) { return *this= *this * r; } CE MInt& operator/=(const MInt& r) { return *this= *this / r; } CE bool operator==(const MInt& r) const { return B::md.norm(x) == B::md.norm(r.x); } CE bool operator!=(const MInt& r) const { return !(*this == r); } CE bool operator<(const MInt& r) const { return B::md.norm(x) < B::md.norm(r.x); } CE inline MInt inv() const { return mod_inv(val(), B::md.mod); } CE inline Uint val() const { return B::md.get(x); } friend ostream& operator<<(ostream& os, const MInt& r) { return os << r.val(); } friend istream& operator>>(istream& is, MInt& r) { i64 v; return is >> v, r= MInt(v), is; } private: Uint x; }; template using ModInt= conditional_t < (MOD < (1 << 30)) & MOD, MInt, MOD>>, conditional_t < (MOD < (1ull << 62)) & MOD, MInt, MOD>>, conditional_t>, conditional_t>, conditional_t>, MInt>>>>>>; #undef CE } using math_internal::ModInt; template mod_t get_inv(int n) { static_assert(is_modint_v); static const auto m= mod_t::mod(); static mod_t dat[LM]; static int l= 1; if (l == 1) dat[l++]= 1; while (l <= n) dat[l++]= dat[m % l] * (m - m / l); return dat[n]; } using namespace std; using Mint= ModInt<998244353>; struct RSQ { using T= array; static T ti() { return {0, 0, 0}; } static T op(const T &l, const T &r) { return {l[0] + r[0], l[1] + r[1], l[2] + r[2]}; } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vector>> v1(N), v2(N); for (int i= 0; i < N; i++) { int x, y; cin >> x >> y; v1[i]= {x, y, {1, x + y, Mint(x + y) * (x + y)}}; v2[i]= {x, y, {1, x - y, Mint(x - y) * (x - y)}}; } KDTree kdt1(v1), kdt2(v2); Mint ans= 0; for (auto &[x, y, _]: v1) { auto [c, s, s2]= kdt1.fold_cuboid(0, x, 0, y); auto z= x + y; ans+= c * z * z - s * z * 2 + s2; } for (auto &[x, y, _]: v2) { auto [c, s, s2]= kdt2.fold_cuboid(0, x, y, 1e9); auto z= x - y; ans+= c * z * z - s * z * 2 + s2; } cout << ans << '\n'; return 0; }