// #define _GLIBCXX_DEBUG #include // clang-format off std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os< template static constexpr bool tuple_like_v= false; template static constexpr bool tuple_like_v> = true; template static constexpr bool tuple_like_v> = true; template static constexpr bool tuple_like_v> = true; template auto to_tuple(const T &t) { if constexpr (tuple_like_v) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t); } template auto forward_tuple(const T &t) { if constexpr (tuple_like_v) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t); } template static constexpr bool array_like_v= false; template static constexpr bool array_like_v> = true; template static constexpr bool array_like_v> = std::is_convertible_v; template static constexpr bool array_like_v> = true; template static constexpr bool array_like_v> = array_like_v> && std::is_convertible_v; template auto to_array(const T &t) { if constexpr (array_like_v) return std::apply([](auto &&...x) { return std::array{x...}; }, t); } template using to_tuple_t= decltype(to_tuple(T())); template using to_array_t= decltype(to_array(T())); template class SegmentTree_2D { public: using T= typename M::T; using Pos= std::array; std::vector xs; std::vector yxs; std::vector id, tol; std::vector val; template using canbe_Pos= std::is_convertible, std::tuple>; template using canbe_PosV= std::is_convertible, std::tuple>; template static constexpr bool canbe_Pos_and_T_v= std::conjunction_v, std::is_convertible>; int sz; inline int x2i(pos_t x) const { return std::lower_bound(xs.begin(), xs.end(), x) - xs.begin(); } inline int y2i(pos_t y) const { return std::lower_bound(yxs.begin(), yxs.end(), Pos{y, 0}, [](const Pos &a, const Pos &b) { return a[0] < b[0]; }) - yxs.begin(); } inline int xy2i(pos_t x, pos_t y) const { Pos p{y, x}; auto it= std::lower_bound(yxs.begin(), yxs.end(), p); return assert(p == *it), it - yxs.begin(); } template inline auto get_(const P &p) { if constexpr (z == 0) return std::get(p); else return std::get(p.first); } template inline void build(const XYW *xyw, int n, const T &v= M::ti()) { xs.resize(n), yxs.resize(n); for (int i= n; i--;) xs[i]= get_(xyw[i]); std::sort(xs.begin(), xs.end()), xs.erase(std::unique(xs.begin(), xs.end()), xs.end()), id.resize((sz= 1 << (32 - __builtin_clz(xs.size()))) * 2 + 1); std::vector ix(n), ord(n); for (int i= n; i--;) ix[i]= x2i(get_(xyw[i])); for (int i: ix) for (i+= sz; i; i>>= 1) ++id[i + 1]; for (int i= 1, e= sz * 2; i < e; ++i) id[i + 1]+= id[i]; val.assign(id.back() * 2, M::ti()), tol.resize(id[sz] + 1), std::iota(ord.begin(), ord.end(), 0), std::sort(ord.begin(), ord.end(), [&](int i, int j) { return get_(xyw[i]) == get_(xyw[j]) ? get_(xyw[i]) < get_(xyw[j]) : get_(xyw[i]) < get_(xyw[j]); }); for (int i= n; i--;) yxs[i]= {get_(xyw[ord[i]]), get_(xyw[ord[i]])}; std::vector ptr= id; for (int r: ord) for (int i= ix[r] + sz, j= -1; i; j= i, i>>= 1) { int p= ptr[i]++; if constexpr (z == 0) { if constexpr (std::tuple_size_v == 3) val[id[i + 1] + p]= std::get<2>(xyw[r]); else val[id[i + 1] + p]= v; } else val[id[i + 1] + p]= xyw[r].second; if (j != -1) tol[p + 1]= !(j & 1); } for (int i= 1, e= id[sz]; i < e; ++i) tol[i + 1]+= tol[i]; for (int i= 0, e= sz * 2; i < e; ++i) { auto dat= val.begin() + id[i] * 2; for (int j= id[i + 1] - id[i]; --j > 0;) dat[j]= M::op(dat[j * 2], dat[j * 2 + 1]); } } inline T fold(int i, int a, int b) const { int n= id[i + 1] - id[i]; T ret= M::ti(); auto dat= val.begin() + id[i] * 2; for (a+= n, b+= n; a < b; a>>= 1, b>>= 1) { if (a & 1) ret= M::op(ret, dat[a++]); if (b & 1) ret= M::op(dat[--b], ret); } return ret; } inline void seti(int i, int j, T v) { auto dat= val.begin() + id[i] * 2; for (dat[j+= id[i + 1] - id[i]]= v; j;) j>>= 1, dat[j]= M::op(dat[2 * j], dat[2 * j + 1]); } public: template , canbe_PosV

>>> SegmentTree_2D(const P *p, size_t n) { build<0>(p, n); } template , canbe_PosV

>>> SegmentTree_2D(const std::vector

&p): SegmentTree_2D(p.data(), p.size()) {} template ::value>> SegmentTree_2D(const std::set

&p): SegmentTree_2D(std::vector(p.begin(), p.end())) {} template >> SegmentTree_2D(const P *p, size_t n, const U &v) { build<0>(p, n, v); } template >> SegmentTree_2D(const std::vector

&p, const U &v): SegmentTree_2D(p.data(), p.size(), v) {} template >> SegmentTree_2D(const std::set

&p, const U &v): SegmentTree_2D(std::vector(p.begin(), p.end()), v) {} template >> SegmentTree_2D(const std::pair *p, size_t n) { build<1>(p, n); } template >> SegmentTree_2D(const std::vector> &p): SegmentTree_2D(p.data(), p.size()) {} template >> SegmentTree_2D(const std::map &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {} // [l,r) x [u,d) T fold(pos_t l, pos_t r, pos_t u, pos_t d) const { T ret= M::ti(); int L= x2i(l), R= x2i(r); auto dfs= [&](auto &dfs, int i, int a, int b, int c, int d) -> void { if (c == d || R <= a || b <= L) return; if (L <= a && b <= R) return ret= M::op(ret, fold(i, c, d)), void(); int m= (a + b) / 2, ac= tol[id[i] + c] - tol[id[i]], bc= c - ac, ad= tol[id[i] + d] - tol[id[i]], bd= d - ad; dfs(dfs, i * 2, a, m, ac, ad), dfs(dfs, i * 2 + 1, m, b, bc, bd); }; return dfs(dfs, 1, 0, sz, y2i(u), y2i(d)), ret; } void set(pos_t x, pos_t y, T v) { for (int i= 1, p= xy2i(x, y);;) { if (seti(i, p - id[i], v); i >= sz) break; if (int lc= tol[p] - tol[id[i]], rc= (p - id[i]) - lc; tol[p + 1] - tol[p]) p= id[2 * i] + lc, i= 2 * i; else p= id[2 * i + 1] + rc, i= 2 * i + 1; } } T get(pos_t x, pos_t y) const { return val[xy2i(x, y) + id[2]]; } }; template constexpr inline Int mod_inv(Int a, Int mod) { static_assert(std::is_signed_v); Int x= 1, y= 0, b= mod; for (Int q= 0, z= 0; b;) z= x, x= y, y= z - y * (q= a / b), z= a, a= b, b= z - b * q; return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod; } namespace math_internal { using namespace std; using u8= unsigned char; using u32= unsigned; using i64= long long; using u64= unsigned long long; using u128= __uint128_t; #define CE constexpr #define IL inline #define NORM \ if (n >= mod) n-= mod; \ return n #define PLUS(U, M) \ CE IL U plus(U l, U r) const { \ if (l+= r; l >= M) l-= M; \ return l; \ } #define DIFF(U, C, M) \ CE IL U diff(U l, U r) const { \ if (l-= r; l >> C) l+= M; \ return l; \ } #define SGN(U) \ static CE IL U set(U n) { return n; } \ static CE IL U get(U n) { return n; } \ static CE IL U norm(U n) { return n; } template struct MP_Mo { u_t mod; CE MP_Mo(): mod(0), iv(0), r2(0) {} CE MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {} CE IL u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); } PLUS(u_t, mod << 1) DIFF(u_t, A, mod << 1) CE IL u_t set(u_t n) const { return mul(n, r2); } CE IL u_t get(u_t n) const { n= reduce(n); NORM; } CE IL u_t norm(u_t n) const { NORM; } private: u_t iv, r2; static CE u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; } CE IL u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); } }; struct MP_Na { u32 mod; CE MP_Na(): mod(0){}; CE MP_Na(u32 m): mod(m) {} CE IL u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) }; struct MP_Br { // mod < 2^31 u32 mod; CE MP_Br(): mod(0), s(0), x(0) {} CE MP_Br(u32 m): mod(m), s(95 - __builtin_clz(m - 1)), x(((u128(1) << s) + m - 1) / m) {} CE IL u32 mul(u32 l, u32 r) const { return rem(u64(l) * r); } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) private: u8 s; u64 x; CE IL u64 quo(u64 n) const { return (u128(x) * n) >> s; } CE IL u32 rem(u64 n) const { return n - quo(n) * mod; } }; struct MP_Br2 { // 2^20 < mod <= 2^41 u64 mod; CE MP_Br2(): mod(0), x(0) {} CE MP_Br2(u64 m): mod(m), x((u128(1) << 84) / m) {} CE IL u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); } PLUS(u64, mod << 1) DIFF(u64, 63, mod << 1) static CE IL u64 set(u64 n) { return n; } CE IL u64 get(u64 n) const { NORM; } CE IL u64 norm(u64 n) const { NORM; } private: u64 x; CE IL u128 quo(const u128 &n) const { return (n * x) >> 84; } CE IL u64 rem(const u128 &n) const { return n - quo(n) * mod; } }; struct MP_D2B1 { u8 s; u64 mod, d, v; CE MP_D2B1(): s(0), mod(0), d(0), v(0) {} CE MP_D2B1(u64 m): s(__builtin_clzll(m)), mod(m), d(m << s), v(u128(-1) / d) {} CE IL u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; } PLUS(u64, mod) DIFF(u64, 63, mod) SGN(u64) private: CE IL u64 rem(const u128 &u) const { u128 q= (u >> 64) * v + u; u64 r= u64(u) - (q >> 64) * d - d; if (r > u64(q)) r+= d; if (r >= d) r-= d; return r; } }; template CE u_t pow(u_t x, u64 k, const MP &md) { for (u_t ret= md.set(1);; x= md.mul(x, x)) if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret; } #undef NORM #undef PLUS #undef DIFF #undef SGN #undef CE } namespace math_internal { struct m_b {}; struct s_b: m_b {}; } template constexpr bool is_modint_v= std::is_base_of_v; template constexpr bool is_staticmodint_v= std::is_base_of_v; namespace math_internal { #define CE constexpr template struct SB: s_b { protected: static CE MP md= MP(MOD); }; template struct MInt: public B { using Uint= U; static CE inline auto mod() { return B::md.mod; } CE MInt(): x(0) {} template && !is_same_v, nullptr_t> = nullptr> CE MInt(T v): x(B::md.set(v.val() % B::md.mod)) {} CE MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {} CE MInt operator-() const { return MInt() - *this; } #define FUNC(name, op) \ CE MInt name const { \ MInt ret; \ ret.x= op; \ return ret; \ } FUNC(operator+(const MInt& r), B::md.plus(x, r.x)) FUNC(operator-(const MInt& r), B::md.diff(x, r.x)) FUNC(operator*(const MInt& r), B::md.mul(x, r.x)) FUNC(pow(u64 k), math_internal::pow(x, k, B::md)) #undef FUNC CE MInt operator/(const MInt& r) const { return *this * r.inv(); } CE MInt& operator+=(const MInt& r) { return *this= *this + r; } CE MInt& operator-=(const MInt& r) { return *this= *this - r; } CE MInt& operator*=(const MInt& r) { return *this= *this * r; } CE MInt& operator/=(const MInt& r) { return *this= *this / r; } CE bool operator==(const MInt& r) const { return B::md.norm(x) == B::md.norm(r.x); } CE bool operator!=(const MInt& r) const { return !(*this == r); } CE bool operator<(const MInt& r) const { return B::md.norm(x) < B::md.norm(r.x); } CE inline MInt inv() const { return mod_inv(val(), B::md.mod); } CE inline Uint val() const { return B::md.get(x); } friend ostream& operator<<(ostream& os, const MInt& r) { return os << r.val(); } friend istream& operator>>(istream& is, MInt& r) { i64 v; return is >> v, r= MInt(v), is; } private: Uint x; }; template using ModInt= conditional_t < (MOD < (1 << 30)) & MOD, MInt, MOD>>, conditional_t < (MOD < (1ull << 62)) & MOD, MInt, MOD>>, conditional_t>, conditional_t>, conditional_t>, MInt>>>>>>; #undef CE } using math_internal::ModInt; template mod_t get_inv(int n) { static_assert(is_modint_v); static const auto m= mod_t::mod(); static mod_t dat[LM]; static int l= 1; if (l == 1) dat[l++]= 1; while (l <= n) dat[l++]= dat[m % l] * (m - m / l); return dat[n]; } using namespace std; using Mint= ModInt<998244353>; struct RSQ { using T= array; static T ti() { return {0, 0, 0, 0}; } static T op(const T &l, const T &r) { return {l[0] + r[0], l[1] + r[1], l[2] + r[2], l[3] + r[3]}; } }; signed main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vector>> v(N); for (auto &[x, y, c]: v) cin >> x >> y, c= {1, x, y, Mint(x) * y}; SegmentTree_2D seg(v); Mint xs= 0, x2s= 0, ys= 0, y2s= 0; for (auto &[x, y, c]: v) xs+= x, x2s+= Mint(x) * x, ys+= y, y2s+= Mint(y) * y; Mint ans= (x2s + y2s) * N - xs * xs - ys * ys; for (auto &[x, y, c]: v) { auto [cnt, xs, ys, xys]= seg.fold(0, x, 0, y); ans+= (xys - xs * y - ys * x + cnt * x * y) * 2; } for (auto &[x, y, c]: v) { auto [cnt, xs, ys, xys]= seg.fold(x, 0x7fffffff, 0, y); ans-= (xys - xs * y - ys * x + cnt * x * y) * 2; } cout << ans << '\n'; return 0; }