from random import getrandbits, randrange from string import ascii_lowercase, ascii_uppercase import sys from math import ceil, floor, sqrt, pi, factorial, gcd, log, log10, log2, inf, cos, sin from copy import deepcopy, copy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import ( accumulate, product, combinations, combinations_with_replacement, permutations, ) from bisect import bisect, bisect_left, bisect_right from functools import lru_cache, reduce from decimal import Decimal, getcontext from typing import List, Tuple, Optional inf = float("inf") def ceil_div(a, b): return (a + b - 1) // b def isqrt(num): res = int(sqrt(num)) while res * res > num: res -= 1 while (res + 1) * (res + 1) <= num: res += 1 return res def int1(s): return int(s) - 1 from types import GeneratorType def bootstrap(f, stack=[]): def wrapped(*args, **kwargs): if stack: return f(*args, **kwargs) else: to = f(*args, **kwargs) while True: if type(to) is GeneratorType: stack.append(to) to = next(to) else: stack.pop() if not stack: break to = stack[-1].send(to) return to return wrapped import sys import os input = lambda: sys.stdin.readline().rstrip("\r\n") print = lambda *args, end="\n", sep=" ": sys.stdout.write( sep.join(map(str, args)) + end ) def II(): return int(input()) def MII(base=0): return map(lambda s: int(s) - base, input().split()) def LII(base=0): return list(MII(base)) def NA(): n = II() a = LII() return n, a def read_graph(n, m, base=0, directed=False, return_edges=False): g = [[] for _ in range(n)] edges = [] for _ in range(m): a, b = MII(base) if return_edges: edges.append((a, b)) g[a].append(b) if not directed: g[b].append(a) if return_edges: return g, edges return g def read_graph_with_weight(n, m, base=0, directed=False, return_edges=False): g = [[] for _ in range(n)] edges = [] for _ in range(m): a, b, w = MII() a, b = a - base, b - base if return_edges: edges.append((a, b, w)) g[a].append((b, w)) if not directed: g[b].append((a, w)) if return_edges: return g, edges return g def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = None def NI(): global tokens if tokens is None: tokens = iterate_tokens() return int(next(tokens)) def LNI(n): return [NI() for _ in range(n)] def yes(res): print("Yes" if res else "No") def YES(res): print("YES" if res else "NO") def pairwise(a): n = len(a) for i in range(n - 1): yield a[i], a[i + 1] def factorial(n): return reduce(lambda x, y: x * y, range(1, n + 1)) def cmin(dp, i, x): if x < dp[i]: dp[i] = x def cmax(dp, i, x): if x > dp[i]: dp[i] = x def alp_a_to_i(s): return ord(s) - ord("a") def alp_A_to_i(s): return ord(s) - ord("A") def alp_i_to_a(i): return chr(ord("a") + i) def alp_i_to_A(i): return chr(ord("A") + i) d4 = [(1, 0), (0, 1), (-1, 0), (0, -1)] d8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)] def ranges(n, m): return ((i, j) for i in range(n) for j in range(m)) def valid(i, j, n, m): return 0 <= i < n and 0 <= j < m def ninj(i, j, n, m): return [(i + di, j + dj) for di, dj in d4 if valid(i + di, j + dj, n, m)] def gen(x, *args): if len(args) == 1: return [x] * args[0] if len(args) == 2: return [[x] * args[1] for _ in [0] * args[0]] if len(args) == 3: return [[[x] * args[2] for _ in [0] * args[1]] for _ in [0] * args[0]] if len(args) == 4: return [ [[[x] * args[3] for _ in [0] * args[2]] for _ in [0] * args[1]] for _ in [0] * args[0] ] list2d = lambda a, b, v: [[v] * b for _ in range(a)] list3d = lambda a, b, c, v: [[[v] * c for _ in range(b)] for _ in range(a)] class Debug: def __init__(self, debug=False): self.debug = debug cur_path = os.path.dirname(os.path.abspath(__file__)) self.local = os.path.exists(cur_path + "/.cph") def get_ic(self): if self.debug and self.local: from icecream import ic return ic else: return lambda *args, **kwargs: ... class Tree: def __init__(self, edges, root=0, vals=[]): self.n = n = len(edges) + 1 self.root = root self.g = g = [[] for _ in range(n)] for u, v in edges: self.g[u].append(v) self.g[v].append(u) self.parent = parent = [-1] * n stk = [root] self.order = order = [root] while stk: u = stk.pop() for v in g[u]: if v != root and parent[v] == -1: parent[v] = u stk.append(v) order.append(v) def is_leaf(self, u): return self.children_count(u) == 0 def children_count(self, u): return len(self.g[u]) - (u != self.root) ic = Debug(1).get_ic() n = II() g, edges = read_graph(n, n - 1, 1, False, True) tree = Tree(edges, 0) dp0 = [1] * n dp1 = [1] * n for u in reversed(tree.order): if tree.is_leaf(u): continue dp0[u] = inf dp1[u] = -inf for v in tree.g[u]: if v != tree.parent[u]: dp0[u] = min(dp0[u], dp1[v] + 1) dp1[u] = max(dp1[u], dp0[v] + 1) print(dp1[0] - 1) print(dp0[0] - 1)