#ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode ); if( exec_mode == debug_mode || exec_mode == library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){ SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); cin >> test_case_num; } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ cin >> A; ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); } #define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n" #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n" #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n" #endif #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; template using T2 = pair; template using T3 = tuple; template using T4 = tuple; using path = pair; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define TYPE_OF( VAR ) decay_t #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; } #define CIN_A( LL , A , N ) vector A( N ); SET_A( A , N ); #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( #__VA_ARGS__ , ":" , naive , match ? "==" : "!=" , answer ); if( !match ){ return; } // 入出力用 template inline basic_istream& VariadicCin( basic_istream& is ) { return is; } template inline basic_istream& VariadicCin( basic_istream& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator ) { return is; } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg& arg ) { return os << arg; } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); } // 算術用 template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ static_assert( ! is_same::value && ! is_same::value ); \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ ll ANSWER[CONSTEXPR_LENGTH]; \ ll ANSWER_INV[CONSTEXPR_LENGTH]; \ ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索テンプレート // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L < VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( "二分探索中:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , "-" , TARGET , "=" , VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( VARIABLE_FOR_BINARY_SEARCH_L > VARIABLE_FOR_BINARY_SEARCH_U ){ \ CERR( "二分探索失敗:" , VARIABLE_FOR_BINARY_SEARCH_L , ">" , VARIABLE_FOR_BINARY_SEARCH_U ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , ( EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) , TARGET ); \ if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \ CERR( "二分探索成功:" , #ANSWER , "=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , EXPRESSION , "<>"[EXPRESSION > TARGET], TARGET ); \ ANSWER = MAXIMUM + 1; \ } \ } \ // 単調増加の時にEXPRESSION >= TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調増加の時にEXPRESSION <= TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION >= TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION <= TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 template inline typename set::iterator MaximumLeq( set& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 template inline typename set::iterator MaximumLt( set& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 template inline typename set::iterator MinimumGeq( set& S , const T& t ) { return S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 template inline typename set::iterator MinimumGt( set& S , const T& t ) { return S.upper_bound( t ); } // データ構造用 template inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; } template inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; } template inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; } template inline const T& Zero() { static const T z = 0; return z; } template inline const T& One() { static const T o = 1; return o; }\ template inline T AddInv( const T& t ) { return -t; } template inline T Id( const T& v ) { return v; } template inline T Min( const T& a , const T& b ){ return a < b ? a : b; } template inline T Max( const T& a , const T& b ){ return a < b ? b : a; } // グリッド問題用 int H , W , H_minus , W_minus , HW; vector > non_wall; inline T2 EnumHW( const int& v ) { return { v / W , v % W }; } inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; } const string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return ik?0:jh?3:(assert(false),-1);} // v->wの方向番号を取得 inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;} inline void SetEdgeOnGrid( const string& Si , const int& i , list ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+10){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1 ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+10){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1 >& non_wall , const char& walkable = '.' , const char& unwalkable = '#' ){non_wall.push_back(vector(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}} // グラフ用関数 template list E( const int& i ); template vector > e; // デバッグ用 #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void AutoCheck( int& exec_mode ); inline void Solve(); inline void Experiment(); inline void SmallTest(); inline void RandomTest(); ll GetRand( const ll& Rand_min , const ll& Rand_max ); int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , debug_mode , 1 ); CEXPR( int , library_search_mode , 2 ); CEXPR( int , experiment_mode , 3 ); CEXPR( int , small_test_mode , 4 ); CEXPR( int , random_test_mode , 5 ); #endif // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& /* C-x 3 C-x o C-x C-fによるファイル操作用 BIT: c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txt BFS: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt DFS on Tree: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/compress.txt Divisor: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt Mod: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt Polynomial c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt */ // VVV ライブラリは以下に挿入する。 #define DC_OF_FIRST_SEARCH(BREADTH)TE CL BREADTH ## FirstSearch_Body{PU:int m_V;int m_init;LI m_next;bool m_found[V_max];int m_prev[V_max];IN BREADTH ## FirstSearch_Body(CRI V);IN BREADTH ## FirstSearch_Body(CRI V,CRI init);IN VO Reset(CRI init);IN VO Shift(CRI init);IN CRI SZ()CO;IN CRI init()CO;IN bool& found(CRI i);IN CRI prev(CRI i)CO;int Next();virtual LI e(CRI t)= 0;};TE E(CRI)> CL BREADTH ## FirstSearch:PU BREADTH ## FirstSearch_Body{PU:TE IN BREADTH ## FirstSearch(CO Args&... args);IN LI e(CRI t);};TE E(CRI)> VO BREADTH ## FirstConnectedComponent(CRI V,int(&vertex)[V_max],int& count); #define DF_OF_FIRST_SEARCH(BREADTH,PUSH)TE IN BREADTH ## FirstSearch_Body::BREADTH ## FirstSearch_Body(CRI V):m_V(V),m_init(),m_next(),m_found(),m_prev(){assert(m_V <= V_max);for(int i = 0;i < m_V;i++){m_prev[i] = -1;}}TE IN BREADTH ## FirstSearch_Body::BREADTH ## FirstSearch_Body(CRI V,CRI init):BREADTH ## FirstSearch_Body(V){m_init = init;m_next.push_back(m_init);m_found[m_init] = true;}TE E(CRI)> TE IN BREADTH ## FirstSearch::BREADTH ## FirstSearch(CO Args&... args):BREADTH ## FirstSearch_Body(args...){}TE IN VO BREADTH ## FirstSearch_Body::Reset(CRI init){m_init = init;assert(m_init < m_V);m_next.clear();m_next.push_back(m_init);for(int i = 0;i < m_V;i++){m_found[i] = i == m_init;m_prev[i] = -1;}}TE IN VO BREADTH ## FirstSearch_Body::Shift(CRI init){m_init = init;assert(m_init < m_V);m_next.clear();if(! m_found[m_init]){m_next.push_back(m_init);m_found[m_init] = true;}}TE IN CRI BREADTH ## FirstSearch_Body::SZ()CO{RE m_V;}TE IN CRI BREADTH ## FirstSearch_Body::init()CO{RE m_init;}TE IN bool& BREADTH ## FirstSearch_Body::found(CRI i){assert(i < m_V);RE m_found[i];}TE IN CRI BREADTH ## FirstSearch_Body::prev(CRI i)CO{assert(i < m_V);RE m_prev[i];}TE int BREADTH ## FirstSearch_Body::Next(){if(m_next.empty()){RE -1;}CO int i_curr = m_next.front();m_next.pop_front();LI edge = e(i_curr);WH(! edge.empty()){CRI i = edge.front();bool& found_i = m_found[i];if(! found_i){m_next.PUSH(i);m_prev[i] = i_curr;found_i = true;}edge.pop_front();}RE i_curr;}TE E(CRI)> IN LI BREADTH ## FirstSearch::e(CRI t){RE E(t);}TE E(CRI)> VO BREADTH ## FirstConnectedComponentSearch(CRI V,int(&vertex)[V_max],int& count){BREADTH ## FirstSearch bfs{V};count = 0;for(int i = 0;i < V;i++){vertex[i] = -1;}for(int i = 0;i < V;i++){if(vertex[i] == -1){bfs.Shift(i);int j = bfs.Next();WH(j != -1?vertex[j] == 0:false){vertex[j] = count;j = bfs.Next();}count++;}}RE;} DC_OF_FIRST_SEARCH(Depth);DF_OF_FIRST_SEARCH(Depth,push_front); TE E(CRI),int digit = 0>CL DepthFirstSearchOnTree:PU DepthFirstSearch{PU:int m_reversed[V_max];VE > m_children;VE m_children_num;bool m_set_children;VE m_depth;bool m_set_depth;VE m_height;bool m_set_height;VE m_weight;bool m_set_weight;VE m_doubling[digit];bool m_set_doubling;IN DepthFirstSearchOnTree(CRI V,CRI root);IN VO Reset(CRI init)= delete;IN VO Shift(CRI init)= delete;IN CRI Root()CO;IN CRI Parent(CRI i)CO;IN CO VE& Children(CRI i);IN CRI Depth(CRI i)CO;IN CRI Height(CRI i);IN CRI Weight(CRI i);IN CRI NodeNumber(CRI i,CO bool& reversed = false)CO;IN CRI ChildrenNumber(CRI i);int Ancestor(int i,int n);int LCA(int i,int j);int LCA(int i,int j,int& i_prev,int& j_prev);TE &,const int&)>T RootingDP();TE VO RerootingDP(T(&d)[V_max]);VO SetChildren();VO SetDepth();VO SetHeight();VO SetWeight();VO SetDoubling();}; TE E(CRI),int digit> IN DepthFirstSearchOnTree::DepthFirstSearchOnTree(CRI V,CRI root):DepthFirstSearch(V,root),m_reversed(),m_children(),m_set_children(),m_depth(),m_set_depth(),m_height(),m_set_height(),m_weight(),m_set_weight(),m_doubling(),m_set_doubling(){int n = DepthFirstSearch::SZ();WH(--n >= 0){m_reversed[n] = DepthFirstSearch::Next();}}TE E(CRI),int digit> IN CRI DepthFirstSearchOnTree::Root()CO{RE DepthFirstSearch::init();}TE E(CRI),int digit> IN CRI DepthFirstSearchOnTree::Parent(CRI i)CO{RE DepthFirstSearch::prev(i);}TE E(CRI),int digit> IN CO VE& DepthFirstSearchOnTree::Children(CRI i){if(! m_set_children){SetChildren();}RE m_children[i];}TE E(CRI),int digit> IN CRI DepthFirstSearchOnTree::Depth(CRI i)CO{if(! m_set_depth){SetDepth();}RE m_depth[i];}TE E(CRI),int digit> IN CRI DepthFirstSearchOnTree::Height(CRI i){if(! m_set_height){SetHeight();}RE m_height[i];}TE E(CRI),int digit> IN CRI DepthFirstSearchOnTree::Weight(CRI i){if(! m_set_weight){SetWeight();}RE m_weight[i];}TE E(CRI),int digit> IN CRI DepthFirstSearchOnTree::NodeNumber(CRI i,CO bool& reversed)CO{RE m_reversed[reversed?i:DepthFirstSearch::SZ()- 1 - i];}TE E(CRI),int digit> IN CRI DepthFirstSearchOnTree::ChildrenNumber(CRI i){if(! m_set_children){SetChildren();}RE m_children_num[i];}TE E(CRI),int digit>int DepthFirstSearchOnTree::Ancestor(int i,int n){if(! m_set_doubling){SetDoubling();}assert((n >> digit)== 0);int d = 0;WH(n != 0){if((n & 1)== 1){assert((i = m_doubling[d][i])!= -1);}d++;n >>= 1;}RE i;}TE E(CRI),int digit>int DepthFirstSearchOnTree::LCA(int i,int j){int diff = Depth(i)- Depth(j);if(diff < 0){swap(i,j);diff *= -1;}i = Ancestor(i,diff);if(i == j){RE i;}int d = digit;WH(--d >= 0){CO int(&doubling_d)[V_max] = m_doubling[d];CRI doubling_d_i = doubling_d[i];CRI doubling_d_j = doubling_d[j];if(doubling_d_i != doubling_d_j){i = doubling_d_i;j = doubling_d_j;assert(i != -1);assert(j != -1);}}RE Parent(i);}TE E(CRI),int digit>int DepthFirstSearchOnTree::LCA(int i,int j,int& i_prev,int& j_prev){if(i == j){i_prev = j_prev = -1;RE i;}int diff = Depth(i)- Depth(j);if(diff < 0){RE LCA(j,i,j_prev,i_prev);}if(diff > 0){i_prev = Ancestor(i,diff - 1);i = Parent(i_prev);assert(i != -1);if(i == j){j_prev = -1;RE i;}}else if(! m_set_doubling){SetDoubling();}int d = digit;WH(--d >= 0){CO int(&doubling_d)[V_max] = m_doubling[d];CRI doubling_d_i = doubling_d[i];CRI doubling_d_j = doubling_d[j];if(doubling_d_i != doubling_d_j){i = doubling_d_i;j = doubling_d_j;assert(i != -1);assert(j != -1);}}i_prev = i;j_prev = j;RE Parent(i_prev);}TE E(CRI),int digit>VO DepthFirstSearchOnTree::SetChildren(){assert(!m_set_children);m_set_children = true;CRI V = DepthFirstSearch::SZ();m_children.resize(V);m_children_num.resize(V);for(int i = 0;i < V;i++){CRI j = Parent(i);if(j == -1){m_children_num[i] = -1;}else{VE& m_children_j = m_children[j];m_children_num[i] = m_children_j.SZ();m_children_j.push_back(i);}}RE;}TE E(CRI),int digit>VO DepthFirstSearchOnTree::SetDepth(){assert(!m_set_depth);m_set_depth = true;CRI V = DepthFirstSearch::SZ();m_depth.resize(V);for(int i = 0;i < V;i++){CRI parent_i = Parent(i);if(parent_i != -1){m_depth[i] = m_depth[parent_i] + 1;}}RE;}TE E(CRI),int digit>VO DepthFirstSearchOnTree::SetHeight(){assert(!m_set_height);m_set_height = true;CRI V = DepthFirstSearch::SZ();m_height.resize(V);for(int i = 0;i < V;i++){CRI reversed_i = m_reversed[i];CRI parent_i = Parent(reversed_i);if(parent_i != -1){int& height_parent_i = m_height[parent_i];CRI height_i = m_height[reversed_i];height_parent_i > height_i?height_parent_i:height_parent_i = height_i + 1;}}RE;}TE E(CRI),int digit>VO DepthFirstSearchOnTree::SetWeight(){assert(!m_set_weight);m_set_weight = true;CRI V = DepthFirstSearch::SZ();m_weight.resize(V);for(int i = 0;i < V;i++){CRI reversed_i = m_reversed[i];CRI parent_i = Parent(reversed_i);if(parent_i != -1){m_weight[parent_i] += m_weight[reversed_i] + 1;}}RE;}TE E(CRI),int digit>VO DepthFirstSearchOnTree::SetDoubling(){assert(!m_set_doubling);m_set_doubling = true;CRI V = DepthFirstSearch::SZ();{VE& doubling_0 = m_doubling[0];doubling_0.reserve(V);CRI r = Root();for(int i = 0;i < V;i++ ){doubling_0.push_back(Parent(i));}}for(int d = 1;d < digit;d++ ){VE& doubling_d = m_doubling[d];VE& doubling_d_minus = m_doubling[d-1];doubling_d.reserve(V);for(int i = 0;i < V;i++){CRI doubling_d_minus_i = doubling_d_minus[i];doubling_d.push_back(doubling_d_minus_i == -1?-1:doubling_d_minus[doubling_d_minus_i]);}}}TE E(CRI),int digit> TE &,const int&)>T DepthFirstSearchOnTree::RootingDP(){if(! m_set_children){SetChildren();}CRI V = DepthFirstSearch::SZ();LI children_value[V_max] = {};T temp;for(int n = 0;n < V;n++){CRI i = NodeNumber(n,true);CRI j = Parent(i);temp = f(children_value[i],i);if(j != -1){children_value[j].push_back(temp);}}RE temp;}TE E(CRI),int digit> TE VO DepthFirstSearchOnTree::RerootingDP(T(&d)[V_max]){if(! m_set_children){SetChildren();}CRI V = DepthFirstSearch::SZ();CO T& e = e_T();VE children_value[V_max] ={};VE left_sum[V_max] ={};VE right_sum[V_max] ={};for(int i = 0;i < V;i++){children_value[i].resize(m_children[i].SZ());}for(int n = 0;n < V;n++){CRI i = NodeNumber(n,true);CO VE& children_value_i = children_value[i];CO int SZ_i = children_value_i.SZ();T temp = e;VE& left_sum_i = left_sum[i];left_sum_i.reserve(SZ_i + 1);left_sum_i.push_back(temp);for(int m = 0;m < SZ_i;m++){left_sum_i.push_back(temp = m_T(temp,children_value_i[m]));}CRI j = Parent(i);if(j != -1){children_value[j][m_children_num[i]] = f(temp,i);}temp = e;VE& right_sum_i = right_sum[i];right_sum_i.resize(SZ_i);for(int m = 1;m <= SZ_i;m++){right_sum_i[ SZ_i - m ] = temp;temp = m_T(children_value_i[SZ_i - m],temp);}}for(int n = 1;n < V;n++){CRI i = NodeNumber(n);CRI j = Parent(i);CRI k = ChildrenNumber(i);VE& left_sum_i = left_sum[i];VE& right_sum_i = right_sum[i];CO int SZ_i = right_sum_i.SZ();CO T rest_i = f(m_T(left_sum[j][k],right_sum[j][k]),j);for(int m = 0;m <= SZ_i;m++){T& left_sum_im = left_sum_i[m];left_sum_im = m_T(rest_i,left_sum_im);}}for(int i = 0;i < V;i++){d[i] = f(left_sum[i].back(),i);}RE;} // AAA ライブラリは以上に挿入する。 // VVV テンプレート引数用の関数は以下に挿入する。 // H,W,eは宣言済み。 template list E( const int& i ) { // list answer{}; list answer = e[i]; // VVV 入力によらない処理は以下に挿入する。 // AAA 入力によらない処理は以上に挿入する。 return answer; } // AAA テンプレート引数用の関数は以上に挿入する。 ll Naive( int N , int M , int K ) { ll answer = N + M + K; return answer; } ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } inline void Solve() { // // 大きな素数 // CEXPR( ll , P , 998244353 ); // // CEXPR( ll , P , 1000000007 ); // Mod

を使う時はP2に変更。 // // データ構造使用畤のNの上限 DEXPR( int , bound_N , 200000 , 100 ); // 0が5個 // // DEXPR( int , bound_N , 1000000000 , 100 ); // 0が9個 // // DEXPR( ll , bound_N , 1000000000000000000 , 100 ); // 0が18個 // // データ構造使用畤のMの上限 // // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N ); // DEXPR( int , bound_M , 100000 , 100 ); // 0が5個 // // DEXPR( int , bound_M , 1000000000 , 100 ); // 0が9個 // // DEXPR( ll , bound_M , 1000000000000000000 , 100 ); // 0が18個 // // 数 CIN( ll , N ); // CIN( ll , M ); // CIN( ll , N , M , K ); // // CIN_ASSERT( N , 1 , bound_N ); // ランダムテスト用。上限のデフォルト値は10^5。 // // CIN_ASSERT( M , 1 , bound_M ); // ランダムテスト用。上限のデフォルト値は10^5。 // // 文字列 // CIN( string , S ); // CIN( string , T ); // // 配列 // CIN_A( ll , A , N ); // // CIN_A( ll , B , N ); // // vector A( N ); // // vector B( N ); // // ll A[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。 // // ll B[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。 // // FOR( i , 0 , N ){ // // cin >> A[i] >> B[i]; // // } // // 順列 // vector P( N ); // vector P_inv( N ); // FOR( i , 0 , N ){ // cin >> P[i]; // P_inv[--P[i]] = i; // } // グラフ e.resize( N ); // e.resize( N ); ll M = N - 1; FOR( j , 0 , M ){ CIN_ASSERT( uj , 1 , N ); CIN_ASSERT( vj , 1 , N ); uj--; vj--; e[uj].push_back( vj ); e[vj].push_back( uj ); // CIN( ll , wj ); // e[uj].push_back( { vj , wj } ); // e[vj].push_back( { uj , wj } ); } // // 座標圧縮や単一クエリタイプなどのための入力格納 // vector > data( M ); // FOR( j , 0 , M ){ // CIN( ll , x , y , z ); // data[j] = { x , y , z }; // } // // 一般のクエリ // CIN( int , Q ); // // DEXPR( int , bound_Q , 100000 , 100 ); // 基本不要。 // // CIN_ASSERT( Q , 1 , bound_Q ); // 基本不要。 // // vector > query( Q ); // // vector > query( Q ); // FOR( q , 0 , Q ){ // CIN( int , type ); // if( type == 1 ){ // CIN( int , x , y ); // // query[q] = { type , x , y }; // } else if( type == 2 ){ // CIN( int , x , y ); // // query[q] = { type , x , y }; // } else { // CIN( int , x , y ); // // query[q] = { type , x , y }; // } // // CIN( int , x , y ); // // // query[q] = { x , y }; // } // // sort( query , query + Q ); // // FOR( q , 0 , Q ){ // // auto& [x,y] = query[q]; // // // auto& [type,x,y] = query[q]; // // } // // データ構造や壁配列使用畤のH,Wの上限 // DEXPR( int , bound_H , 2000 , 30 ); // // DEXPR( int , bound_H , 100000 , 10 ); // 0が5個 // // CEXPR( int , bound_H , 1000000000 ); // 0が9個 // CEXPR( int , bound_W , bound_H ); // static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 ); // CEXPR( int , bound_HW , bound_H * bound_W ); // // CEXPR( int , bound_HW , 100000 ); // 0が5個 // // CEXPR( int , bound_HW , 1000000 ); // 0が6個 // // グリッド // cin >> H >> W; // // SET_ASSERT( H , 1 , bound_H ); // ランダムテスト用。上限のデフォルト値は2*10^3。 // // SET_ASSERT( W , 1 , bound_W ); // ランダムテスト用。上限のデフォルト値は2*10^3。 // H_minus = H - 1; // W_minus = W - 1; // HW = H * W; // // assert( HW <= bound_HW ); // 基本不要。上限のデフォルト値は4*10^6。 // vector S( H ); // FOR( i , 0 , H ){ // cin >> S[i]; // // SetEdgeOnGrid( S[i] , i , e ); // // SetWallOnGrid( S[i] , i , non_wall ); // } // // {h,w}へデコード: EnumHW( v ) // // {h,w}をコード: EnumHW_inv( h , w ); // // (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h ); // // v->wの方向番号を取得: DirectionNumberOnGrid( v , w ); // // 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n ); DepthFirstSearchOnTree> dfst{ N , 0 }; int mw[N]{}; int Mw[N]{}; FOREQINV( i , M , 0 ){ auto& n = dfst.NodeNumber( i ); CERR( n + 1 , Mw[n] , mw[n] ); auto& p = dfst.Parent( n ); if( p != -1 ){ mw[p] = mw[p] == 0 ? Mw[n] + 1 : min( mw[p] , Mw[n] + 1 ); Mw[p] = max( Mw[p] , mw[n] + 1 ); } } COUT( Mw[0] ); COUT( mw[0] ); // auto answer = Answer( N , M , K ); // RETURN( answer ); // // COUT( answer ); // // COUT_A( A , N ); } inline void Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } inline void SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // // COMPARE( N ); // } } REPEAT_MAIN(1);