#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include template struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt& operator+=(const ModInt& p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt& operator-=(const ModInt& p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt& operator*=(const ModInt& p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt& operator/=(const ModInt& p) { *this *= p.inverse(); return *this; } ModInt& operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt& p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt& p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt& p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt& p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt& p) const { return x == p.x; } bool operator!=(const ModInt& p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream& operator<<(std::ostream& os, const ModInt& p) { return os << p.x; } friend std::istream& operator>>(std::istream& is, ModInt& a) { long long x; is >> x; a = ModInt(x); return (is); } }; using mint = ModInt<1000000007>; const int MOD = 1000000007; struct MComb { std::vector fact; std::vector inversed; MComb(int n) { // O(n+log(mod)) fact = std::vector(n + 1, 1); for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i); inversed = std::vector(n + 1); inversed[n] = fact[n] ^ (MOD - 2); for (int i = n - 1; i >= 0; i--) inversed[i] = inversed[i + 1] * mint(i + 1); } mint ncr(int n, int r) { if (n < r) return 0; return (fact[n] * inversed[r] * inversed[n - r]); } mint npr(int n, int r) { return (fact[n] * inversed[n - r]); } mint nhr(int n, int r) { assert(n + r - 1 < (int)fact.size()); return ncr(n + r - 1, r); } }; mint ncr(int n, int r) { mint res = 1; for (int i = n - r + 1; i <= n; i++) res *= i; for (int i = 1; i <= r; i++) res /= i; return res; } template std::vector get_divisors(T x, bool sorted = true) { std::vector res; for (T i = 1; i <= x / i; i++) if (x % i == 0) { res.push_back(i); if (i != x / i) res.push_back(x / i); } if (sorted) std::sort(res.begin(), res.end()); return res; } void solve() { int n; std::cin >> n; std::vector dp(n, std::vector(2, 0)); std::vector g(n, std::vector()); if (n == 1) { std::cout << 1 << '\n' << 1 << '\n'; return; } for (int i = 0; i < n - 1; i++) { int u, v; std::cin >> u >> v; u--, v--; g[u].push_back(v); g[v].push_back(u); } auto dfs = [&](auto&& dfs, int u, int p) -> void { dp[u][1] = 1e9; if (g[u].size() == 1 and u != 0) { dp[u][1] = 0; } for (int v : g[u]) { if (v == p) continue; dfs(dfs, v, u); dp[u][0] = std::max(dp[v][1] + 1, dp[u][0]); dp[u][1] = std::min(dp[v][0] + 1, dp[u][1]); } }; dfs(dfs, 0, -1); std::cout << dp[0][0] << '\n' << dp[0][1] << '\n'; } int main() { int t = 1; // std::cin >> t; while (t--) solve(); }