import sys readline=sys.stdin.readline def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: #assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Build_Inverse(self,N): self.inverse=[None]*(N+1) assert self.p>N self.inverse[1]=1 for n in range(2,N+1): if n%self.p==0: continue a,b=divmod(self.mod,n) self.inverse[n]=(-a*self.inverse[b])%self.mod def Inverse(self,n): return self.inverse[n] def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu H,W,K=map(int,readline().split()) H-=1;W-=1 K//=2 mod=998244353 fact=[1]+[i for i in range(1,H+W+1)] for i in range(1,H+W+1): fact[i]*=fact[i-1] fact[i]%=mod fact_inve=[i for i in range(1,H+W+1)]+[pow(fact[H+W],mod-2,mod)] for i in range(H+W-1,-1,-1): fact_inve[i]*=fact_inve[i+1] fact_inve[i]%=mod N=min(H,W) ans=0 if K<=310: for h in range(N+1): if h: prev=dp dp=[0]*(2*K+1) else: dp=[0]*(2*K+1) dp[K]=1 for w in range(max(h-K,0),min(h+K,N)+1): if h and abs((h-1)-w)<=K: dp[w-h+K]+=prev[w-(h-1)+K] if w and abs(h-(w-1))<=K: dp[w-h+K]+=dp[(w-1)-h+K] dp[w-h+K]%=mod ans+=fact[H+W]*fact_inve[H-h]%mod*fact_inve[W-h]%mod*fact_inve[2*h]%mod*dp[K]%mod ans%=mod else: for cnt in range(N+1): s=fact_inve[cnt]*fact_inve[cnt]%mod for i in range(1,cnt//(K+1)+1): if i%2: s-=2*fact_inve[cnt-(K+1)*i]*fact_inve[cnt+(K+1)*i]%mod else: s+=2*fact_inve[cnt-(K+1)*i]*fact_inve[cnt+(K+1)*i]%mod s%=mod ans+=fact[H+W]*fact_inve[H-cnt]%mod*fact_inve[W-cnt]%mod*s%mod ans%=mod print(ans)