import math # Extended Euclidean Algorithm def extgcd(a, b): if b: d, y, x = extgcd(b, a % b) y -= (a // b)*x return d, x, y return a, 1, 0 # lcm (least common multiple) def lcm(m, n): return math.lcm(m,n) def Chineese_mod_theory(b, m): # 求めたいxがあって m1とm2が互いに疎であり、x%m1≡b1, x%m2≡b2であるとき # x = b1m2 + b2m1 である # 例えば b1m2%m1≡b1, b2m1%m1≡0である # これは拡張ユークリッドの互除法で考えると # m1p1 + m2p2 = d(=gcd(m1, m2)) # s = (b1-b2)/d と置くと # m1p1s + m2p2s = b1-b2 # x = b2 + m2p2s, x = b1 - m1p1s # のどっちかを解けばいい MOD = 10**9 + 7 M = 1 r = 0 for i in range(len(b)): d, p1, p2 = extgcd(M, m[i]) if (b[i]-r)%d != 0: return (-1,0) s = (b[i]-r)//d tmp = (s * p1) % (m[i]//d) r = (r + M*tmp) M = (M * (m[i]//d)) return (r%M)%MOD, M%MOD def oi(): return int(input()) def os(): return input() def mi(): return list(map(int, input().split())) # import sys # input = sys.stdin.readline # import sys # sys.setrecursionlimit(10**8) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') # input_count = 0 input_count = 0 N = oi() amari = [] wari = [] all_zero = True for _ in range(N): x,y = mi() wari.append(y) amari.append(x) if x != 0: all_zero = False if all_zero: # amari, wari = pre_garner(amari, wari) out = 1 for w in wari: out = (out*w)%(10**9+7) print(out) else: # amari, wari = pre_garner(amari, wari) # if amari is None: # print(-1) # else: out = Chineese_mod_theory(amari, wari) print(out[0])