#include // clang-format off std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<std::ostream &operator<<(std::ostream&,const std::vector&); templatestd::ostream &operator<<(std::ostream&,const std::set&); templatestd::ostream &operator<<(std::ostream&os,const std::pair&x){return os<<"("<std::ostream&operator<<(std::ostream &os,const std::array &arr) {os<<'['<void print(std::ostream&os,const Tup &x,std::index_sequence){(void)(int[]){(os<(x)<<", ",0)...};} templatestd::ostream &operator<<(std::ostream&os,const std::tuple &x) {static constexpr std::size_t N = sizeof...(Args);os<<"(";if constexpr(N>=2)print(os,x,std::make_index_sequence());return os<(x)<<")";} templatestd::ostream &operator<<(std::ostream&os,const std::vector&vec){os<<'[';for(int _=0,__= vec.size();_<__;++_)os<<(_ ?", ":"")<std::ostream &operator<<(std::ostream&os,const std::set&s){os<<'{';int _=0;for(const auto &x:s)os<<(_++ ? ", " : "")<"< void debug__(const std::string &s, const T &a, const Args &...x) {std::cerr << BRIGHT_CYAN << s << COLOR_RESET << " = ";std::cerr << a;(std::cerr << ... << (std::cerr << ", ", x));std::cerr << func_LINE_FILE << '\n';} #define debug(...) debug__(#__VA_ARGS__,__VA_ARGS__) #define debugArray(x, n) do{std::cerr< class SparseTable { std::vector> dat; F f; public: SparseTable() {} SparseTable(const std::vector &v, const F &f): f(f) { int n= v.size(), log= n > 1 ? 31 - __builtin_clz(n - 1) : 0; dat.resize(log + 1), dat[0].assign(v.begin(), v.end()); for (int i= 0, I= 1, j; i < log; ++i, I<<= 1) for (dat[i + 1].resize(j= dat[i].size() - I); j--;) dat[i + 1][j]= f(dat[i][j], dat[i][j + I]); } // [l, r) T fold(int l, int r) const { if (r == l + 1) return dat[0][l]; int k= 31 - __builtin_clz(r - l - 1); return f(dat[k][l], dat[k][r - (1 << k)]); } }; template struct ListRange { using Iterator= typename std::vector::const_iterator; Iterator bg, ed; Iterator begin() const { return bg; } Iterator end() const { return ed; } size_t size() const { return std::distance(bg, ed); } const T &operator[](int i) const { return bg[i]; } }; template class CsrArray { std::vector csr; std::vector pos; public: CsrArray()= default; CsrArray(const std::vector &c, const std::vector &p): csr(c), pos(p) {} size_t size() const { return pos.size() - 1; } const ListRange operator[](int i) const { return {csr.cbegin() + pos[i], csr.cbegin() + pos[i + 1]}; } }; class CartesianTree { std::vector> rg, ch; std::vector par; int rt; public: template CartesianTree(const Vec &a, bool is_min= 1): rg(a.size()), ch(a.size(), std::array{-1, -1}), par(a.size(), -1) { const int n= a.size(); auto comp= [&](int l, int r) { return (is_min ? a[l] < a[r] : a[l] > a[r]) || (a[l] == a[r] && l < r); }; int st[n], t= 0; for (int i= n; i--; rg[i][1]= (t ? st[t - 1] : n), st[t++]= i) while (t && comp(i, st[t - 1])) ch[i][1]= st[--t]; for (int i= t= 0; i < n; rg[i][0]= (t ? st[t - 1] + 1 : 0), st[t++]= i++) while (t && comp(i, st[t - 1])) ch[i][0]= st[--t]; for (int i= 0; i < n; ++i) for (int b= 2; b--;) if (ch[i][b] != -1) par[ch[i][b]]= i; for (int i= 0; i < n; ++i) if (par[i] == -1) rt= i; } std::array children(int i) const { return ch[i]; } int parent(int i) const { return par[i]; } int root() const { return rt; } // [l,r) std::array range(int i) const { return rg[i]; } }; template class Tree { template struct Edge_B { int to; T cost; operator int() const { return to; } }; template struct Edge_B { int to; operator int() const { return to; } }; using Edge= Edge_B; using C= std::conditional_t, std::nullptr_t, Cost>; std::vector, std::pair, std::tuple>> es; std::vector g; std::vector P, PP, D, I, L, R, pos; std::vector DW, W; public: Tree(int n): P(n, -2) {} template std::enable_if_t, void> add_edge(int u, int v) { es.emplace_back(u, v), es.emplace_back(v, u); } template std::enable_if_t, void> add_edge(int u, int v, T c) { es.emplace_back(u, v, c), es.emplace_back(v, u, c); } template , std::is_convertible>, std::nullptr_t> = nullptr> void add_edge(int u, int v, T c, U d) /* c:u->v, d:v->u */ { es.emplace_back(u, v, c), es.emplace_back(v, u, d); } void build(int root= 0) { size_t n= P.size(); I.resize(n), PP.resize(n), std::iota(PP.begin(), PP.end(), 0), D.assign(n, 0), L.assign(n, 0), R.assign(n, 0), pos.resize(n + 1), g.resize(es.size()); for (const auto &e: es) ++pos[std::get<0>(e)]; std::partial_sum(pos.begin(), pos.end(), pos.begin()); if constexpr (std::is_void_v) for (const auto &[f, t]: es) g[--pos[f]]= {t}; else for (const auto &[f, t, c]: es) g[--pos[f]]= {t, c}; auto f= [&, i= 0, v= 0, t= 0](int r) mutable { for (P[r]= -1, I[t++]= r; i < t; ++i) for (int u: operator[](v= I[i])) if (P[v] != u) P[I[t++]= u]= v; }; f(root); for (size_t r= 0; r < n; ++r) if (P[r] == -2) f(r); std::vector Z(n, 1), nx(n, -1); for (int i= n, v; i--;) { if (P[v= I[i]] == -1) continue; if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v; if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v; } for (int v: I) if (nx[v] != -1) PP[nx[v]]= v; for (int v: I) if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1; for (int i= n; i--;) L[I[i]]= i; for (int v: I) { int ir= R[v]= L[v] + Z[v]; for (int u: operator[](v)) if (u != P[v] && u != nx[v]) L[u]= ir-= Z[u]; if (nx[v] != -1) L[nx[v]]= L[v] + 1; } if constexpr (weight) { DW.resize(n), W.resize(n); for (int v: I) for (auto &[u, c]: operator[](v)) { if (u != P[v]) DW[u]= DW[v] + c; else W[v]= c; } } for (int i= n; i--;) I[L[i]]= i; } size_t size() const { return P.size(); } const ListRange operator[](int v) const { return {g.cbegin() + pos[v], g.cbegin() + pos[v + 1]}; } int depth(int v) const { return D[v]; } C depth_w(int v) const { static_assert(weight, "\'depth_w\' is not available"); return DW[v]; } int to_seq(int v) const { return L[v]; } int to_node(int i) const { return I[i]; } int parent(int v) const { return P[v]; } int head(int v) const { return PP[v]; } int root(int v) const { for (v= PP[v];; v= PP[P[v]]) if (P[v] == -1) return v; } bool connected(int u, int v) const { return root(u) == root(v); } int lca(int u, int v) const { for (;; v= P[PP[v]]) { if (L[u] > L[v]) std::swap(u, v); if (PP[u] == PP[v]) return u; } } int la(int v, int k) const { assert(k <= D[v]); for (int u;; k-= L[v] - L[u] + 1, v= P[u]) if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k]; } int la_w(int v, C w) const { static_assert(weight, "\'la_w\' is not available"); for (C c;; w-= c) { int u= PP[v]; if (c= DW[v] - DW[u] + W[u]; w < c) { int ok= L[v], ng= L[u] - 1; for (int m; ok - ng > 1;) m= (ok + ng) / 2, (DW[v] - DW[I[m]] <= w ? ok : ng)= m; return I[ok]; } if (v= P[u]; v == -1) return u; } } int jump(int u, int v, int k) const { if (!k) return u; if (u == v) return -1; if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u]; int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w]; return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k); } int jump_w(int u, int v, C w) const { static_assert(weight, "\'jump_w\' is not available"); if (u == v) return u; int z= lca(u, v); C d_uz= DW[u] - DW[z], d_vz= DW[v] - DW[z]; return w >= d_uz + d_vz ? v : w <= d_uz ? la_w(u, w) : la_w(v, d_uz + d_vz - w); } int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; } C dist_w(int u, int v) const { static_assert(weight, "\'dist_w\' is not available"); return DW[u] + DW[v] - DW[lca(u, v)] * 2; } // u is in v bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; } int subtree_size(int v) const { return R[v] - L[v]; } // half-open interval std::array subtree(int v) const { return std::array{L[v], R[v]}; } // sequence of closed intervals template std::vector> path(int u, int v) const { std::vector> up, down; while (PP[u] != PP[v]) { if (L[u] < L[v]) down.emplace_back(std::array{L[PP[v]], L[v]}), v= P[PP[v]]; else up.emplace_back(std::array{L[u], L[PP[u]]}), u= P[PP[u]]; } if (L[u] < L[v]) down.emplace_back(std::array{L[u] + edge, L[v]}); else if (L[v] + edge <= L[u]) up.emplace_back(std::array{L[u], L[v] + edge}); return up.insert(up.end(), down.rbegin(), down.rend()), up; } }; template struct SuffixArray { String s; std::vector sa; static inline std::vector sa_is(const std::vector &s, int K) { const int n= s.size(); std::vector t(n); std::vector bkt(K, 0), bkt_l(K), bkt_r(K), sa(n), p1; t.back()= true; for (int i= n; --i;) if (t[i - 1]= (s[i - 1] < s[i] || (t[i] && s[i - 1] == s[i])); t[i] && !t[i - 1]) p1.push_back(i); std::reverse(p1.begin(), p1.end()); const int n1= p1.size(); for (int i= n; i--;) ++bkt[s[i]]; for (int i= 0, sum= 0; i < K; ++i) sum+= bkt[i], bkt_r[i]= sum, bkt_l[i]= sum - bkt[i]; std::vector s1(n1), sa1(n1); std::fill_n(sa.begin(), n, -1), std::copy_n(bkt_r.begin(), K, bkt.begin()); for (int i= n1; i--;) sa[--bkt[s[p1[i]]]]= p1[i]; std::copy_n(bkt_l.begin(), K, bkt.begin()); for (int i= 0, j; i < n; ++i) if ((j= sa[i] - 1) >= 0 && !t[j]) sa[bkt[s[j]]++]= j; std::copy_n(bkt_r.begin(), K, bkt.begin()); for (int i= n, j; i--;) if ((j= sa[i] - 1) >= 0 && t[j]) sa[--bkt[s[j]]]= j; for (int i= 0, j= 0; i < n; ++i) if (t[sa[i]] && sa[i] > 0 && !t[sa[i] - 1]) sa1[j++]= sa[i]; int name= 0; for (int i= 0, prev= -1, j, pos; i < n1; ++i, sa[pos]= name - 1) for (j= 0, pos= sa1[i];; ++j) if (prev == -1 || s[pos + j] != s[prev + j] || t[pos + j] != t[prev + j]) { prev= pos, ++name; break; } else if (j && ((t[pos + j] && !t[pos + j - 1]) || (t[prev + j] && !t[prev + j - 1]))) break; for (int i= n1; i--;) s1[i]= sa[p1[i]]; if (name != n1) sa1= sa_is(s1, name); else for (int i= n1; i--;) sa1[s1[i]]= i; std::copy_n(bkt_r.begin(), K, bkt.begin()), std::fill_n(sa.begin(), n, -1); for (int i= n1; i--;) sa[--bkt[s[p1[sa1[i]]]]]= p1[sa1[i]]; for (int i= 0, j; i < n; ++i) if ((j= sa[i] - 1) >= 0 && !t[j]) sa[bkt_l[s[j]]++]= j; for (int i= n, j; i--;) if ((j= sa[i] - 1) >= 0 && t[j]) sa[--bkt_r[s[j]]]= j; return sa; } public: SuffixArray(const String &S): s(S) { std::vector s_cpy(s.size() + 1); if constexpr (std::is_convertible_v) std::copy(s.begin(), s.end(), s_cpy.begin()), sa= sa_is(s_cpy, 128), sa.erase(sa.begin()); else { auto v= s; sort(v.begin(), v.end()), v.erase(unique(v.begin(), v.end()), v.end()); for (int i= s.size(); i--;) s_cpy[i]= std::lower_bound(v.begin(), v.end(), s[i]) - v.begin() + 1; sa= sa_is(s_cpy, v.size() + 1), sa.erase(sa.begin()); } } int operator[](int i) const { return sa[i]; } size_t size() const { return sa.size(); } auto begin() const { return sa.begin(); } auto end() const { return sa.end(); } // return {l,r} s.t. P is a prefix of S[sa[i]:] ( i in [l,r) ) // l == r if P is not a substr of S // O(|P|log|S|) std::pair pattern_matching(const String &P) const { const int n= s.size(), m= P.size(); if (n < m) return {0, 0}; auto f1= [&](int h) { auto t= s.begin() + h; for (int j= 0, e= std::min(n - h, m); j < e; ++j) { if (t[j] < P[j]) return true; if (t[j] > P[j]) return false; } return n - h < m; }; auto f2= [&](int h) { auto t= s.begin() + h; for (int j= 0, e= std::min(n - h, m); j < e; ++j) if (t[j] > P[j]) return false; return true; }; auto L= std::partition_point(sa.begin(), sa.end(), f1), R= std::partition_point(L, sa.end(), f2); return {L - sa.begin(), R - sa.begin()}; } }; struct LCPArray { std::vector rnk; template LCPArray(const SuffixArray &sa): rnk(sa.size()) { const int n= sa.size(), log= n > 2 ? 31 - __builtin_clz(n - 2) : 0; dat.resize(log + 1), dat[0].resize(n - 1); auto &lcp= dat[0]; for (int i= n; i--;) rnk[sa[i]]= i; for (int i= 0, h= 0; i < n; ++i) { if (rnk[i] == n - 1) { h= 0; continue; } for (int j= sa[rnk[i] + 1]; i + h < n && j + h < n && sa.s[i + h] == sa.s[j + h];) ++h; if ((lcp[rnk[i]]= h)) --h; } for (int i= 0, I= 1, j; i < log; ++i, I<<= 1) for (dat[i + 1].resize(j= dat[i].size() - I); j--;) dat[i + 1][j]= std::min(dat[i][j], dat[i][j + I]); } int operator[](int i) const { return dat[0][i]; } size_t size() const { return dat[0].size(); } auto begin() const { return dat[0].begin(); } auto end() const { return dat[0].end(); } int operator()(int i, int j) const { if (i == j) return rnk.size() - i; auto [l, r]= std::minmax(rnk[i], rnk[j]); if (r == l + 1) return dat[0][l]; int k= 31 - __builtin_clz(r - l - 1); return std::min(dat[k][l], dat[k][r - (1 << k)]); } private: std::vector> dat; }; struct SuffixTree { Tree tree; std::vector> node; std::vector suf; template SuffixTree(const SuffixArray &sa, const LCPArray &lcp): tree(1), suf(sa.size()) { const int n= sa.size(); node.emplace_back(0, n, 0, 0); if (n == 1) { tree= Tree(2), tree.add_edge(0, 1), tree.build(), node.emplace_back(0, 1, 0, 1), suf[0]= 1; return; } std::vector> es; CartesianTree ct(lcp); auto dfs= [&](auto dfs, int p, int idx, int h) -> void { auto [l, r]= ct.range(idx); ++r; int hh= lcp[idx]; if (h < hh) es.emplace_back(p, node.size()), p= node.size(), node.emplace_back(l, r, h, hh); auto [lch, rch]= ct.children(idx); if (lch == -1) { if (hh < n - sa[idx]) es.emplace_back(p, node.size()), suf[sa[idx]]= node.size(), node.emplace_back(idx, idx + 1, hh, n - sa[idx]); else suf[sa[idx]]= p; } else dfs(dfs, p, lch, hh); if (rch == -1) { if (hh < n - sa[idx + 1]) es.emplace_back(p, node.size()), suf[sa[idx + 1]]= node.size(), node.emplace_back(idx + 1, idx + 2, hh, n - sa[idx + 1]); else suf[sa[idx + 1]]= p; } else dfs(dfs, p, rch, hh); }; if (int r= ct.root(); lcp[r] > 0) es.emplace_back(0, 1), node.emplace_back(0, n, 0, lcp[r]), dfs(dfs, 1, r, lcp[r]); else dfs(dfs, 0, r, 0); tree= Tree(node.size()); for (auto [u, v]: es) tree.add_edge(u, v); tree.build(); } int size() const { return node.size(); } auto &operator[](int i) const { return node[i]; } auto begin() const { return node.begin(); } auto end() const { return node.end(); } int substr(int l) const { return suf[l]; } int substr(int l, int n) const { for (int v= suf[l], u, w;; v= w) if (u= tree.head(v), w= tree.parent(u); w == -1 || std::get<3>(node[w]) < n) { int ok= tree.to_seq(v), ng= tree.to_seq(u) - 1; for (int m; ok - ng > 1;) m= (ok + ng) / 2, (n <= std::get<3>(node[tree.to_node(m)]) ? ok : ng)= m; return tree.to_node(ok); } } template std::string debug_output(const SuffixArray &sa) const { std::string res= "\n"; for (int i= 0; i < node.size(); ++i) { auto [l, r, h, hh]= node[i]; res+= std::to_string(i) + ": (" + std::to_string(l) + "," + std::to_string(r) + "," + std::to_string(h) + "," + std::to_string(hh) + ") "; res+= sa.s.substr(sa[l] + h, hh - h); res+= "\n"; } for (int i= 0; i < sa.size(); ++i) { res+= " " + sa.s.substr(sa[i]) + "\n"; } return res; } }; using namespace std; namespace yukicoder2361 { signed main() { cin.tie(0); ios::sync_with_stdio(0); int N, Q; cin >> N >> Q; string S; cin >> S; SuffixArray sa(S); LCPArray lcp(sa); SuffixTree st(sa, lcp); // debug(st.debug_output(sa)); int n= st.size(); vector sum(n); for (int i= 0; i + 1 < n; ++i) { auto [l, r, h, hh]= st[i]; sum[i + 1]= sum[i] + (long long)(r - l) * (hh - h); } while (Q--) { int L, R; cin >> L >> R, --L; int len= R - L; int v= st.substr(L, len); auto [l, r, h, hh]= st[v]; cout << sum[v] + (long long)(r - l) * (len - h - 1) << '\n'; } return 0; } } signed main() { yukicoder2361::main(); return 0; }