// いろいろ高速化 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define YES(b) {cout << ((b) ? "YES\n" : "NO\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 矩形内判定 // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif //【フィボナッチ探索】 /* * Fibonacci_search(ll w) : O(log w) * 最大で幅 w の開区間まで扱えるよう初期化する. * * ll search(ll left, ll right, function f, bool up = true) : O(log(right - left)) * 関数 f(i) の開区間 (left, right) における最大[小]値を与える i を返す. * up = true なら f の階差の符号変化は + → 0 → - で,返すのは最大値となる. * up = false なら f の階差の符号変化は - → 0 → + で,返すのは最小値となる. */ struct Fibonacci_search { int n; vl fib; Fibonacci_search(ll w) : n(1), fib({ 1, 1 }) { // 利用する範囲のフィボナッチ数列を準備する. while (fib[n] < w) { fib.push_back(fib[n] + fib[n - 1]); n++; } } ll search(ll left, ll right, const function& f_, bool up = true) const { auto f = [&](ll x) { // 符号変化の条件を満たすよう範囲外の値を定めておく. ll val; if (x <= left) { val = -INFL - (left - x); } else if (x >= right) { // たぶん大丈夫だけどオーバーフローに注意 val = -INFL - (x - right); } else { val = (up ? f_(x) : -f_(x)); } return val; }; // l, m1, m2, r の順で区間を φ : 1 : φ に内分する点を得る. int i = n; ll l = left; ll r = l + fib[i]; ll m1 = l + fib[i - 2]; ll m2 = l + fib[i - 1]; i -= 3; // 内分点における関数値の計算 ll v1 = f(m1); ll v2 = f(m2); // 候補が内分点のみになるまで while (i > 0) { // 左の内分点での値の方が大きければ,次の区間は左側をとる. if (v1 > v2) { // 右の内分点を新たに右端とする. r = m2; // 左の内分点を新たに右の内分点とする. m2 = m1; v2 = v1; // 左の内分点を新たに計算する. m1 = l + fib[i]; v1 = f(m1); } // 右の内分点での値の方が大きければ,次の区間は右側をとる. else { // 左の内分点を新たに左端とする. l = m1; // 右の内分点を新たに左の内分点とする. m1 = m2; v1 = v2; // 右の内分点を新たに計算する. m2 = r - fib[i]; v2 = f(m2); } i--; } // 最後の候補を比較し,大きかった方の番号を返す. return (v1 > v2) ? m1 : m2; } }; //【ランダム三分探索(下に凸)】O(log(r - l))(の改変) /* * 階差の符号変化が - → 0 → + である関数 f(x) の開区間 (l..r) における最小値を与える x を返す. * 下に凸でなくても運が良ければ正しい x を返す. */ template ll random_ternary_search_lc(ll l, ll r, const FUNC& f) { static bool first_call = true; static mt19937 mt; static uniform_int_distribution rnd; if (first_call) { first_call = false; mt.seed((int)time(NULL)); rnd = uniform_int_distribution(0, INFL); } while (r - l > 2) { ll m1 = l + 1 + rnd(mt) % (r - l - 1); ll m2 = l + 1 + rnd(mt) % (r - l - 1); if (m1 == m2) continue; if (m1 > m2) swap(m1, m2); if (f(m1) < f(m2)) l = m1; else r = m2; } return l + 1; /* f の定義の雛形 auto f = [&](ll x) { return x; }; */ } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); auto start = chrono::system_clock::now(); int n, m; cin >> n >> m; vector ap, dp, an, dn; rep(i, n) { ll a, d; cin >> a >> d; if (d >= 0) { ap.push_back(a); dp.push_back(d); } else { an.push_back(a); dn.push_back(d); } } int np = sz(ap), nn = sz(an); vector scn(m + 1); priority_queue> q; rep(i, nn) q.push({ an[i], i, 0 }); dump(q); repi(i, 1, m) { auto [val, id, k] = q.top(); q.pop(); scn[i] = scn[i - 1] + val; q.push({ an[id] + (k + 1) * dn[id], id, k + 1 }); } dump(scn); ll res = -INFL; Fibonacci_search F(m + 1); rep(i, np) { auto f = [&](ll x) { return (ll)x * (2 * ap[i] + (x - 1) * dp[i]) / 2 + scn[m - x]; }; // 凸ではないけどフィボナッチ探索,大体はこれでいける. auto j = F.search(-1, m + 1, f); dump(j); chmax(res, f(j)); } rep(ii, INF) { int i = ii % np; auto f = [&](ll x) { return (ll)x * (2 * ap[i] + (x - 1) * dp[i]) / 2 + scn[m - x]; }; // 残り時間いっぱいは運ゲー三分探索 int j = random_ternary_search_lc(-1, m + 1, f); chmax(res, f(j)); auto now = chrono::system_clock::now(); auto msec = chrono::duration_cast(now - start).count(); if (msec >= 1950) break; } cout << res << endl; }