#line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template constexpr T infty = 0; template <> constexpr int infty = 1'000'000'000; template <> constexpr ll infty = ll(infty) * infty * 2; template <> constexpr u32 infty = infty; template <> constexpr u64 infty = infty; template <> constexpr i128 infty = i128(infty) * infty; template <> constexpr double infty = infty; template <> constexpr long double infty = infty; using pi = pair; using vi = vector; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template T ceil(T x, T y) { return floor(x + y - 1, y); } template T bmod(T x, T y) { return x - y * floor(x, y); } template pair divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template T SUM(const vector &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template T POP(deque &que) { T a = que.front(); que.pop_front(); return a; } template T POP(pq &que) { T a = que.top(); que.pop(); return a; } template T POP(pqg &que) { T a = que.top(); que.pop(); return a; } template T POP(vc &que) { T a = que.back(); que.pop_back(); return a; } template ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc s_to_vi(const string &S, char first_char) { vc A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template vector argsort(const vector &A) { vector ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { vc B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" #define FASTIO #include // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template void rd_real(T &x) { string s; rd(s); x = stod(s); } template void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed::value || is_same_v) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed::value || is_same_v) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template void rd(pair &p) { return rd(p.first), rd(p.second); } template void rd_tuple(T &t) { if constexpr (N < std::tuple_size::value) { auto &x = std::get(t); rd(x); rd_tuple(t); } } template void rd(tuple &tpl) { rd_tuple(tpl); } template void rd(array &x) { for (auto &d: x) rd(d); } template void rd(vc &x) { for (auto &d: x) rd(d); } void read() {} template void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template void wt(const pair val) { wt(val.first); wt(' '); wt(val.second); } template void wt_tuple(const T t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get(t); wt(x); wt_tuple(t); } } template void wt(tuple tpl) { wt_tuple(tpl); } template void wt(const array val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template void wt(const vector val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "/home/maspy/compro/library/mod/modint_common.hpp" struct has_mod_impl { template static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_mod : public decltype(has_mod_impl::check(std::declval())) {}; template mint inv(int n) { static const int mod = mint::get_mod(); static vector dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template mint fact_inv(int n) { static vector dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv(len(dat))); return dat[n]; } template mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv(xs)); } template mint multinomial(Head &&head, Tail &&... tail) { return fact(head) * fact_invs(std::forward(tail)...); } template mint C_dense(int n, int k) { static vvc C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense(n, k); if constexpr (!large) return multinomial(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv(k); } template mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv(n) * fact(k) * fact(n - k); return mint(1) / C(n, k); } // [x^d](1-x)^{-n} template mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C(n + d - 1, d); } #line 3 "/home/maspy/compro/library/mod/modint.hpp" template struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template void rd(modint &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template void wt(modint x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 1 "/home/maspy/compro/library/enumerate/product.hpp" // [0, A0) x [0, A1) x ... template void enumerate_product(vc A, F query) { int N = len(A); auto dfs = [&](auto& dfs, vc& p) -> void { int n = len(p); if (n == N) return query(p); FOR(x, A[n]) { p.eb(x); dfs(dfs, p); p.pop_back(); } }; vc p; dfs(dfs, p); } #line 5 "main.cpp" using mint = modint998; /* 0. 行ごとに LR 1. 列ごとに UD 2. x+y=0 mod 2 なら縦, x+y=1 mod 2 なら横. 3. x+y=0 mod 2 なら横, x+y=1 mod 2 なら縦. 4. U,L のちょうど 2 方向からなる. 5. U,R のちょうど 2 方向からなる. 6. D,L のちょうど 2 方向からなる. 7. D,R のちょうど 2 方向からなる. 8. 特殊 2,3 から 2 方向 4,5,6,7 をひいておく */ vvc SPECIAL; void four() { vc A(4, string(4, '?')); string DIR = "DRUL"; FOR(s, 1 << 16) { string S(8, '?'); FOR(i, 8) { int x = s >> (2 * i) & 3; S[i] = DIR[x]; } A[0] = {S[0], S[1], S[2], S[3]}; A[1] = {S[4], S[5], S[6], S[7]}; A[2] = {S[2], S[3], S[0], S[1]}; A[3] = {S[6], S[7], S[4], S[5]}; bool ok = 1; using P = pair; vv(P, pos, 4, 4); FOR(i, 4) FOR(j, 4) pos[i][j] = {2 * i, 2 * j}; FOR(8) { FOR(i, 4) FOR(j, 4) { if (A[i][j] == 'L') pos[i][j].se = (pos[i][j].se + 7) & 7; if (A[i][j] == 'R') pos[i][j].se = (pos[i][j].se + 1) & 7; if (A[i][j] == 'D') pos[i][j].fi = (pos[i][j].fi + 1) & 7; if (A[i][j] == 'U') pos[i][j].fi = (pos[i][j].fi + 7) & 7; } FOR(a, 16) FOR(b, a) { auto [x1, y1] = divmod(a, 4); auto [x2, y2] = divmod(b, 4); if (pos[x1][y1] == pos[x2][y2]) ok = 0; } } if (!ok) continue; set ss; for (auto& x: S) ss.insert(x); if (len(ss) <= 2) continue; if (A[0] == A[2] && A[1] == A[3]) continue; SPECIAL.eb(A); } } void solve() { LL(H, W, N); using T = tuple; VEC(T, dat, N); // for (auto& [a, b, c]: dat) { --a, --b; } for (auto& [a, b, c]: dat) { map MP; MP['R'] = 'D'; MP['U'] = 'R'; MP['L'] = 'U'; MP['D'] = 'L'; c = MP[c]; } if (H * W == 1) { mint ANS = (N > 0 ? 1 : 4); return print(ANS); } if (W == 1) { swap(H, W); map MP; MP['L'] = 'U', MP['U'] = 'L'; MP['R'] = 'D', MP['D'] = 'R'; for (auto& [a, b, c]: dat) { swap(a, b); c = MP[c]; } } if (H == 1) { /* ・すべて U or D ・すべて L ・すべて R */ mint X = mint(2).pow(W); mint Y = 1, Z = 1; for (auto& [a, b, c]: dat) { if (c == 'L') X = 0, Z = 0; if (c == 'R') X = 0, Y = 0; if (c == 'U') X *= inv(2), Y = 0, Z = 0; if (c == 'D') X *= inv(2), Y = 0, Z = 0; } mint ANS = X + Y + Z; return print(ANS); } assert(H >= 2 && W >= 2); array ANS{}; { // 0. 行ごとに LR map MP; for (auto& [a, b, c]: dat) { if (c == 'R') { MP[a] |= 1; } elif (c == 'L') { MP[a] |= 2; } else MP[a] |= 3; } mint X = 1; X *= mint(2).pow(H); for (auto& [a, b]: MP) { X *= (b == 3 ? mint(0) : inv(2)); } ANS[0] = X; } { // 1. 列ごとに UD map MP; for (auto& [a, b, c]: dat) { if (c == 'U') { MP[b] |= 1; } elif (c == 'D') { MP[b] |= 2; } else MP[b] |= 3; } mint X = 1; X *= mint(2).pow(W); for (auto& [a, b]: MP) { X *= (b == 3 ? mint(0) : inv(2)); } ANS[1] = X; } FOR(p, 2) { if (H % 2 || W % 2) continue; // 2. x + y = 0 mod 2 なら縦, x + y = 1 mod 2 なら横. // 3. x + y = 1 mod 2 なら縦, x + y = 0 mod 2 なら横. // ちょうど 2 方向になるものは除く map MP1, MP2; for (auto& [a, b, c]: dat) { if ((a + b + p) % 2 == 0) { if (c == 'L') MP1[a] |= 1; elif (c == 'R') MP1[a] |= 2; else { MP1[a] |= 3; } } if ((a + b + p) % 2 == 1) { if (c == 'D') MP2[b] |= 1; elif (c == 'U') MP2[b] |= 2; else { MP2[b] |= 3; } } } mint X = mint(2).pow(H), Y = mint(2).pow(W); mint U = 1, D = 1, R = 1, L = 1; for (auto& [a, b]: MP1) { if (b == 3) X = 0; else X *= inv(2); if (b & 1) L = 0; if (b & 2) R = 0; } for (auto& [a, b]: MP2) { if (b == 3) Y = 0; else Y *= inv(2); if (b & 1) D = 0; if (b & 2) U = 0; } ANS[p + 2] = X * Y - (U + D) * (R + L); } ll g = gcd(H, W); { // 4. U, L の 2 方向からなる. // (x+y) mod g map MP; for (auto& [a, b, c]: dat) { int k = bmod(a + b, g); if (c == 'U') MP[k] |= 1; elif (c == 'L') MP[k] |= 2; else MP[k] |= 3; } mint X = mint(2).pow(g); int s = 0; for (auto& [a, b]: MP) { X *= (b == 3 ? mint(0) : inv(2)); s |= b; } ANS[4] = X - mint(2 - popcnt(s)); } { // 5. U, R の 2 方向からなる. // (x-y) mod g map MP; for (auto& [a, b, c]: dat) { int k = bmod(a - b, g); if (c == 'U') MP[k] |= 1; elif (c == 'R') MP[k] |= 2; else MP[k] |= 3; } mint X = mint(2).pow(g); int s = 0; for (auto& [a, b]: MP) { X *= (b == 3 ? mint(0) : inv(2)); s |= b; } ANS[5] = X - mint(2 - popcnt(s)); } { // 6. D, L の 2 方向からなる. // (x-y) mod g map MP; for (auto& [a, b, c]: dat) { int k = bmod(a - b, g); if (c == 'D') MP[k] |= 1; elif (c == 'L') MP[k] |= 2; else MP[k] |= 3; } mint X = mint(2).pow(g); int s = 0; for (auto& [a, b]: MP) { X *= (b == 3 ? mint(0) : inv(2)); s |= b; } ANS[6] = X - mint(2 - popcnt(s)); } { // 7. D, R の 2 方向からなる. // (x+y) mod g map MP; for (auto& [a, b, c]: dat) { int k = bmod(a + b, g); if (c == 'D') MP[k] |= 1; elif (c == 'R') MP[k] |= 2; else MP[k] |= 3; } mint X = mint(2).pow(g); int s = 0; for (auto& [a, b]: MP) { X *= (b == 3 ? mint(0) : inv(2)); s |= b; } ANS[7] = X - mint(2 - popcnt(s)); } if (g % 4 == 0) { // 8. 特殊系 for (auto& A: SPECIAL) { bool ok = 1; for (auto& [a, b, c]: dat) { if (A[a & 3][b & 3] != c) ok = 0; } if (ok) ANS[8] += mint(1); } } mint ans = 0; for (auto& x: ANS) ans += x; print(ans); } signed main() { four(); INT(T); FOR(T) solve(); return 0; }