#include #include #include using namespace std; using namespace atcoder; using ll = long long; using mint = modint998244353; const ll MAX = 1e6+10; vector f, finv; mint inv(mint x){ mint ans = 1; ll e = 998244351; while (e > 0){ if ((e & 1LL)) ans *= x; e = e >> 1LL; x *= x; } return ans; } void init(){ f.resize(MAX+1); finv.resize(MAX+1); f[0] = 1; for (int i=1; i<=MAX; i++) f[i] = f[i-1]*i; finv[MAX] = inv(f[MAX]); for (int i=MAX-1; i>=0; i--) finv[i] = finv[i+1] * (i+1); } mint C(ll n, ll k){ if (n < k || k < 0) return 0; return f[n] * finv[k] * finv[n-k] ; } template struct FormalPowerSeries : vector { using vector::vector; using vector::operator=; using F = FormalPowerSeries; F operator-() const { F res(*this); for (auto &e : res) e = -e; return res; } F &operator*=(const T &g) { for (auto &e : *this) e *= g; return *this; } F &operator/=(const T &g) { assert(g != T(0)); *this *= g.inv(); return *this; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); for (int i=0; i>=(const int d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(n, d)); (*this).resize(n); return *this; } F inv(int d = -1) const { int n = (*this).size(); assert(n != 0 && (*this)[0] != 0); if (d == -1) d = n; assert(d > 0); F res{(*this)[0].inv()}; while (res.size() < d) { int m = size(res); F f(begin(*this), begin(*this) + min(n, 2*m)); F r(res); f.resize(2*m), internal::butterfly(f); r.resize(2*m), internal::butterfly(r); for (int i=0; i<2*m; i++) f[i] *= r[i]; internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(2*m), internal::butterfly(f); for (int i=0; i<2*m; i++) f[i] *= r[i]; internal::butterfly_inv(f); T iz = T(2*m).inv(); iz *= -iz; for (int i=0; i> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; for (int i=n-1; i>=0; i--){ (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } return *this; } F &operator/=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); for (int i=0; i i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } return *this; } // multiply and divide (1 + cz^d) void multiply(const int d, const T c) { int n = (*this).size(); if (c == T(1)) for (int i=n-d-1; i>=0; i--) (*this)[i+d] += (*this)[i]; else if (c == T(-1)) for (int i=n-d-1; i>=0; i--) (*this)[i+d] -= (*this)[i]; else for (int i=n-d-1; i>=0; i--) (*this)[i+d] += (*this)[i] * c; } void divide(const int d, const T c) { int n = (*this).size(); if (c == T(1)) for (int i=0; i>(const int d) const { return F(*this) >>= d; } F operator*(const F &g) const { return F(*this) *= g; } F operator/(const F &g) const { return F(*this) /= g; } F operator*(vector> g) const { return F(*this) *= g; } F operator/(vector> g) const { return F(*this) /= g; } }; using mint = modint998244353; using fps = FormalPowerSeries; int main(){ init(); ll H, W, N, K; cin >> H >> W >> N >> K; auto func=[&](ll X)->vector{ ll x, y; mint c; if (K*2 <= X) x = K-1, y = X-K*2+2; else x = X-K, y = X-(X-K)*2; vector ps(N+1), s(N+1); fps a(N+1), b(N+1); c = 1; for (int i=0; i<=N; i++){ b[i] = finv[i+1]; c *= x+1; a[i] = c * finv[i+1]; } a *= b.inv(); for (int i=0; i<=N; i++) ps[i] = a[i] * f[i]; ps[0] -= 1; c = 1; for (int i=0; i<=N; i++){ s[i] = ps[i] * 2 + c * y; c *= x+1; } return s; }; mint ans, M, c; ans = mint(H) * W; M = -mint((H-K+1) * (W-K+1)).inv(); c = 1; vector hs=func(H), ws=func(W); for (int i=0; i<=N; i++){ ans -= c * C(N, i) * hs[i] * ws[i]; c *= M; } cout << ans.val() << endl; return 0; }