/* #define _GLIBCXX_DEBUG //*/ #include /* #include using namespace atcoder; //*/ using namespace std; #define dbl double #define ll long long #define ull unsigned long long #define ld long double #define pii pair #define pll pair #define ti3 tuple #define tl3 tuple #define vi vector #define vd vector #define vc vector #define vl vector #define vb vector #define vs vector #define vvi vector> #define vvd vector> #define vvc vector> #define vvb vector> #define vvl vector> #define vvvi vector>> #define vvvd vector>> #define vvvc vector>> #define vvvl vector>> #define vvvvi vector>>> #define vvvvd vector>>> #define vvvvc vector>>> #define vvvvl vector>>> #define vpi vector #define vpl vector #define prq priority_queue #define prq2 priority_queue> #define seti set #define setl set #define quel queue #define pb push_back #define ps push #define ins insert #define rev reverse #define fi first #define se second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define forv(i,V) for(const auto& i:V) #define rep(i,n) for (ll i = 0; i < (ll)(n); i++) #define repi(i,j,n) for (ll i = (ll)(j);i < (ll)(n);i++) #define rep2(i,n) for(ll i=(ll)(n-1);i>=0ll;i--) #define repi2(i,n,j) for(ll i=(ll)(n-1);i>=(ll)(j);i--) #define faster ios::sync_with_stdio(false);std::cin.tie(nullptr); const double PI=3.14159265358979323846; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") vl dxs = {1, 0, -1, 0}; vl dys = {0, 1, 0, -1}; ll max(int a,ll b){return max((ll)a,b);} ll max(ll a,int b){return max((ll)b,a);} ll min(int a,ll b){return min((ll)a,b);} ll min(ll a,int b){return min((ll)b,a);} ll gcd(ll a,ll b){if(b==0){return a;}else{return gcd(b,a%b);}} ll lcm(ll a,ll b){return (a/gcd(a,b))*b;} ll indexlb(vl &v,ll x){auto it=lb(all(v),x);ll index=it-v.begin();return index;} ll indexub(vl &v,ll x){auto it=ub(all(v),x);ll index=it-v.begin();return index;} ll setlb(setl &s,ll x){auto it=s.lb(x); return *it;}//番目ではなく要素が返ってくる ll setub(setl &s,ll x){auto it=s.ub(x); return *it;}//番目ではなく要素が返ってくる void setpre(double d,ll x){cout< void output(vector &A) {rep(i,A.size()){cout< void cinvec(vector &A){rep(i,A.size()) cin>>A[i];} template void coutvece(vector &A){for(ll i=0;i bool chmin(T &a,const T &b){if(b bool chmax(T &a,const T &b){if(b>a){a=b; return 1;} return 0;} void yesno(bool i){if(i)cout<<"yes"<0) { if(n&1) res=(res*a)%mod; a=a*a%mod; n>>=1; } return res; } vl factt,invv,fact_inv; void combjyunbi(ll size,ll mod){ factt.resize(size+5); fact_inv.resize(size+5); invv.resize(size+5); factt[0]=factt[1]=1; fact_inv[0]=fact_inv[1]=1; invv[1]=1; repi(i,2,size+5){ factt[i]=factt[i-1]*i%mod; invv[i]=mod-invv[mod%i]*(mod/i)%mod; fact_inv[i]=fact_inv[i-1]*invv[i]%mod; } } //combjyunbiしてから!!! ll combmod(ll n,ll k,ll mod){ return factt[n]*(fact_inv[k]*fact_inv[n-k]%mod)%mod; } ll combmod2(ll n,ll k,ll mod){ ll ans=1; repi(i,1,k+1){ ans*=modwari(n-i+1,i,mod); ans%=mod; } return ans; } //nが大きく、kが小さい場合(計算量はO(k)) struct edge { ll from; //辺の始点 ll to; //辺の終点 ll leng; //辺の重み }; struct yukoedge{ ll to; }; using Graph =vvl; using Graph2=vector>; using Graph3=vector>;//.pb({x})で作成 vl topo_sort(const Graph3 &G,ll a){//bfs できない場合は返り値のsize≠n a=0ならtoposo a=1なら一意性 vl ans; ll n=G.size(); vl ind(n);// ind[i]: 頂点iに入る辺の数(次数) rep(i,n){//count index forv(e,G[i]){ ind[e.to]++; } } quel que;//辞書順最小が欲しかったらprq2にする rep(i,n){//次数が0の点 if(ind[i]==0){ que.push(i); } } bool itii=true; while(!que.empty()){//bfs ll now=que.front(); if(que.size()!=1) itii=false; ans.pb(now); que.pop(); forv(e,G[now]){ ind[e.to]--; if(ind[e.to]==0) { que.push(e.to); } } } if(a==0) return ans; else{ vl res; if(itii) res.pb(1); else res.pb(0); return res; } } vl sieve(ll n){ //fast_soinsuの前処理 O(NloglogN) //vl min_factor=sieve(1e6)などでコピー //min_factor[n]でnを割り切る最小の素数 vl min_factor(n+1); rep(i,n+1) min_factor[i] = i; for(ll i=2;i*i<=n;i++){ if(min_factor[i]==i){ for(ll j=2;i*j<= n;j++){ if(min_factor[i*j]>i){ min_factor[i*j]=i; } } } } return min_factor; } vector fast_factorize(const vl &min_factor,ll n){ //N以下の正整数すべてを素因数分解するときに有効(全体でNlogN,1つにつきlogN) //vl min_factor=sieve(1e6);で前計算 O(NloglogN) vector res; while(n>1){ ll p=min_factor[n]; ll ex=0; while(min_factor[n]==p){ n/=p; ex++; } res.pb({p,ex}); } return res; } vector factorize(ll n){//素因数分解{因数,乗数} O(sqrt(n)) vector ans; for(ll a=2;a*a<=n;a++){ if(n%a!=0) continue; ll ex=0; while(n%a==0){ ex++; n/=a; } ans.pb({a,ex}); } if(n!=1) ans.push_back({n, 1}); return ans; } vl fast_divisor(vl &min_factor,ll n){ //n以下の正整数すべてに対して約数を列挙するときに有効(1つにつきO(d(n))) //vl min_factor=sieve(1e6); で前計算 O(NloglogN) vl res({1}); auto pf=fast_factorize(min_factor,n); forv(p,pf){ ll s=res.size(); rep(i,s){ ll v=1; rep(j,p.se){ v*=p.fi; res.pb(res[i]*v); } } } return res; } vl divisor(ll n){//約数列挙(sqrt(n)) vl ret; for(ll i=1;i*i<=n;i++){ if(n%i==0){ ret.push_back(i); if(i*i!=n) ret.push_back(n/i); } } return ret; } vb eratos(ll n){//n以下の整数の素数判定(O(NloglogN)) 1-indexed vb primedesu(n+1,true); primedesu[1]=false; repi(p,2,n+1){ if(!primedesu[p]) continue; for(ll q=2*p; q<=n; q+=p){ primedesu[q]=false; } } return primedesu; } bool isprime(ll n){//素数判定 (O(sqrt(n))) if(n<2) return false; else if(n==2) return true; else if(n%2==0) return false; ll sqrtn=floor(sqrt(n)); for(ll i=3;i<=sqrtn;i+=2){ if(n%i==0){ return false; } } return true; } vl mobius(ll n){ //n以下の整数に対するメビウス関数の値の列挙(O(NloglogN)) vl res(n+1,1); vl min_factor(n+1,-1); vb primedesu(n+1,true); primedesu[1]=false; min_factor[1]=1; repi(p,2,n+1){ if(!primedesu[p]) continue; min_factor[p]=p; res[p]=-1; for(ll q=2*p;q<=n;q+=p){ primedesu[q]=false; if(min_factor[q]==-1) min_factor[q]=p; if((q/p)%p==0) res[q]=0; else res[q]=-res[q]; } } return res; } vector> rle(string s){//ランレングス圧縮(数,文字) ll n=s.length(); vector> res; char pre=s[0]; ll cnt=1; repi(i,1,n) { if(pre!=s[i]){ res.push_back({cnt,pre}); pre=s[i]; cnt=1; } else cnt++; } res.push_back({cnt,pre}); return res; } vl bfs(Graph G,ll s){//始点sからの距離 ll n=G.size(); vl dist(n,-1); quel que; dist[s]=0; que.push(s); while (!que.empty()) { ll v=que.front(); que.pop(); forv(nv,G[v]) { if (dist[nv]!=-1) continue; dist[nv]=dist[v]+1; que.push(nv); } } return dist; } template vector jyu_nasi(vector &a){//sortしてから!配列を重複なしにする a.erase(unique(all(a)),a.end()); return a; } map zaatu(vl &a,ll t){//O(NlogN) キーが返され、配列は圧縮済みのものになる map poi; vl copy=a; sort(all(copy)); copy=jyu_nasi(copy); vl res(a.size()); rep(i,a.size()){ if(t==0) poi[indexlb(copy,a[i])]=a[i];//t=0ならキーは圧縮、1ならキーは元の要素 else poi[a[i]]=indexlb(copy,a[i]); res[i]=indexlb(copy,a[i]); } a=res; return poi; } vl ruisekiwa(vl a){//累積和とる ll n=a.size(); vl res(n); res[0]=a[0]; repi(i,1,n){ res[i]=res[i-1]+a[i]; } return res; } vl ruisekiwamod(vl a,ll mod){ ll n=a.size(); vl res(n); res[0]=a[0]; repi(i,1,n){ res[i]=res[i-1]+a[i]; res[i]%=mod; } return res; } struct unionfind{ vl p; unionfind(ll n):p(n,-1){}//rootなら-1*連結成分のサイズ ll root(ll x){ if(p[x]<0){ return x; } else{ p[x]=root(p[x]); return p[x]; } } ll size(ll x){ return -p[root(x)]; } bool same(ll x,ll y){ return root(x)==root(y); } void merge(ll x,ll y){ x=root(x); y=root(y); if(x==y) return; if(size(x),greater> que; vl dst(n,1e18); dst[s]=0; que.push(pll(0,s)); while(que.size()){ ll d=que.top().fi; ll u=que.top().se; que.pop(); if(dst[u]d+cost){ dst[v]=d+cost; que.push(pll(dst[v],v)); } } } return dst; } int main(){ double a,b,c; cin>>a>>b>>c; bool ok=false; repi(i,abs(b-c)+1,b+c){ double x=(b*b-c*c+i*i)/(2*i); double y=i-x;/* setpre(x,12); setpre(y,12);//*/ if(x<0||y<0) continue; for(double j=1;j<=x;j++){ double z=sqrt(b*b+j*j-2*j*x); double w=(b*b+z*z-j*j)/(2*b*z); for(double f=1;f<=y;f++){ double d=sqrt(c*c+f*f-2*f*y); double e=(c*c+d*d-f*f)/(2*c*d);/* if(i==4&&j==1&&f==1){ setpre(z,20); setpre(w,20); setpre(d,20); setpre(e,20); }//*/ if(abs(w-e)<=1e-5&&abs(x-j+y-f-a)<=1e-5){ ok=true; break; } } } } YesNo(ok); }