#include #include #include #include #include using mint = atcoder::modint998244353; using polynomial = std::vector; using formal_power_series = std::vector; formal_power_series fps_inv(const formal_power_series& f, int n) { assert(f.size() and f[0] != 0); formal_power_series g{ f[0].inv() }; for (int k = 1; k < n; k *= 2) { std::vector f_fft(f.begin(), f.begin() + std::min(2 * k, f.size())); std::vector g_fft(g.begin(), g.end()); f_fft.resize(2 * k); g_fft.resize(2 * k); atcoder::internal::butterfly(f_fft); atcoder::internal::butterfly(g_fft); std::vector fg(2 * k); for (int i = 0; i < 2 * k; ++i) { fg[i] = f_fft[i] * g_fft[i]; } atcoder::internal::butterfly_inv(fg); fg.erase(fg.begin(), fg.begin() + k); fg.resize(2 * k); atcoder::internal::butterfly(fg); for (int i = 0; i < 2 * k; ++i) { fg[i] *= g_fft[i]; } atcoder::internal::butterfly_inv(fg); const mint iz = mint(2 * k).inv(), c = -iz * iz; g.resize(2 * k); for (int i = 0; i < k; ++i) { g[k + i] = fg[i] * c; } } g.resize(n); return g; } polynomial operator+(const polynomial& f, const polynomial& g) { const int siz_f = f.size(), siz_g = g.size(); polynomial res = f; if (siz_f < siz_g) { res.resize(siz_g); } for (int i = 0; i < siz_g; ++i) { res[i] += g[i]; } return res; } polynomial operator-(const polynomial& f, const polynomial& g) { const int siz_f = f.size(), siz_g = g.size(); polynomial res = f; if (siz_f < siz_g) { res.resize(siz_g); } for (int i = 0; i < siz_g; ++i) { res[i] -= g[i]; } return res; } polynomial operator*(const polynomial& f, const polynomial& g) { return atcoder::convolution(f, g); } polynomial operator/(polynomial f, polynomial g) { while (f.size() and f.back() == 0) f.pop_back(); while (g.size() and g.back() == 0) g.pop_back(); const int fd = f.size() - 1, gd = g.size() - 1; assert(gd >= 0); if (fd < gd) { return {}; } if (gd == 0) { mint inv_g0 = g[0].inv(); for (auto&& e : f) e *= inv_g0; return f; } std::reverse(f.begin(), f.end()); std::reverse(g.begin(), g.end()); const int qd = fd - gd; f.resize(qd + 1); polynomial q = f * fps_inv(g, qd + 1); q.resize(qd + 1); std::reverse(q.begin(), q.end()); return q; } polynomial operator%(const polynomial& f, const polynomial& g) { polynomial q = f / g, r = f - g * q; while (r.size() and r.back() == 0) r.pop_back(); return r; } mint eval(const polynomial& f, const mint& x) { const int n = f.size(); mint y = 0; for (int i = n - 1; i >= 0; --i) { y = uint64_t(y.val()) * x.val() + f[i].val(); } return y; } std::vector middle_product(const std::vector& a, const std::vector& b) { const int siz_a = a.size(), siz_b = b.size(); assert(siz_a >= siz_b and siz_b); if (std::min(siz_b, siz_a - siz_b + 1) <= 60) { std::vector res(siz_a - siz_b + 1); for (int i = 0; i <= siz_a - siz_b; ++i) { for (int j = 0; j < siz_b; ++j) { res[i] += b[j] * a[i + j]; } } return res; } std::vector res = atcoder::convolution(a, std::vector(b.rbegin(), b.rend())); res.resize(siz_a); res.erase(res.begin(), res.begin() + siz_b - 1); return res; } std::vector multipoint_evaluation(const polynomial& f, const std::vector &xs) { const int n = f.size(), m = xs.size(); if (m == 0) { return {}; } if (f.size() <= 60) { std::vector ys(n); for (int i = 0; i < n; ++i) { ys[i] = eval(f, xs[i]); } return ys; } int k = 1; while (k < m) k *= 2; std::vector> t(2 * k); for (int i = 0; i < m; ++i) { t[k + i] = { 1, -xs[i] }; } for (int i = m; i < k; ++i) { t[k + i] = { 1, 0 }; } for (int i = k - 1; i; --i) { t[i] = t[2 * i] * t[2 * i + 1]; } polynomial f2 = f; f2.resize(2 * n - 1); t[1] = middle_product(f2, fps_inv(t[1], n)); t[1].resize(k); for (int i = 1; i < k; ++i) { std::vector tr = middle_product(t[i], t[2 * i + 0]); std::vector tl = middle_product(t[i], t[2 * i + 1]); t[2 * i + 0] = std::move(tl); t[2 * i + 1] = std::move(tr); } std::vector ys(m); for (int i = 0; i < m; ++i) { ys[i] = t[k + i].empty() ? 0 : t[k + i].front(); } return ys; } std::vector product_of_differences(const std::vector& xs) { // f(x):=Π_i(x-x[i]) // => f'(x)=Σ_i Π[j!=i](x-x[j]) // => f'(x[i])=Π[j!=i](x[i]-x[j]) const int n = xs.size(); std::deque dq; for (int i = 0; i < n; ++i) dq.push_back(polynomial{ -xs[i], 1 }); while (dq.size() >= 2) { auto f = std::move(dq.front()); dq.pop_front(); auto g = std::move(dq.front()); dq.pop_front(); dq.push_back(f * g); } auto f = std::move(dq.front()); for (int i = 0; i < n; ++i) { f[i] = f[i + 1] * (i + 1); } f.pop_back(); return multipoint_evaluation(f, xs); } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int n; std::cin >> n; --n; std::vector d(n); { int p; std::cin >> p; for (int i = 0; i < n; ++i) { int v; std::cin >> v; d[i] = v - p + 1; p = v; } } std::vector sd(n + 1); for (int i = 0; i < n; ++i) { sd[i + 1] = sd[i] + d[i]; } auto res = product_of_differences(sd); mint ans = mint(-1).pow(1LL * (n + 1) * n / 2); for (mint e : res) { ans *= e; } mint fac = 1, facfac = 1; for (int i = 1; i <= n; ++i) { fac *= i; facfac *= fac; } std::cout << (ans / facfac.pow(2)).val() << std::endl; }