import sys # sys.setrecursionlimit(1000005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = -1-(-1 << 31) # inf = -1-(-1 << 63) # md = 10**9+7 md = 998244353 class Sieve: def __init__(self, n): self.plist = [2] min_prime_factor = [2, 0]*(n//2+1) for x in range(3, n+1, 2): if min_prime_factor[x] == 0: min_prime_factor[x] = x self.plist.append(x) if x**2 > n: continue for y in range(x**2, n+1, 2*x): if min_prime_factor[y] == 0: min_prime_factor[y] = x self.min_prime_factor = min_prime_factor def isprime(self, x): return self.min_prime_factor[x] == x def pf(self, x): pp, ee = [], [] while x > 1: mpf = self.min_prime_factor[x] if pp and mpf == pp[-1]: ee[-1] += 1 else: pp.append(mpf) ee.append(1) x //= mpf return pp, ee # unsorted def factor(self, a): ff = [1] pp, ee = self.pf(a) for p, e in zip(pp, ee): ff, gg = [], ff w = p for _ in range(e): for f in gg: ff.append(f*w) w *= p ff += gg return ff sv=Sieve(10**7) # 実数 a√b/c class Real: def gcd(self,a,b): while b:a,b=b,a%b return a def __init__(self,a,b=1,c=1): assert b>0 and c>0 for p in sv.plist: q=p**2 while b%q==0: a*=p b//=q if q > b: break g=self.gcd(a,c) a//=g c//=g self.a,self.b,self.c=a,b,c def __add__(self, other): assert self.b==other.b g=self.gcd(self.c,other.c) c=self.c*other.c//g a=self.a*other.c//g+self.c*other.a//g return Real(a,self.b,c) def __sub__(self, other): assert self.b==other.b g=self.gcd(self.c,other.c) c=self.c*other.c//g a=self.a*other.c//g-self.c*other.a//g return Real(a,self.b,c) def __mul__(self, other): return Real(self.a*other.a,self.b*other.b,self.c*other.c) def __truediv__(self, other): return self*Real(other.c,other.b,other.a*other.b) def __eq__(self, other): return self.a==other.a and self.b==other.b and self.c==other.c def __pow__(self, power, modulo=None): return Real(self.a**2*self.b,1,self.c) def sqrt(self): assert self.b==1 return Real(1,self.a*self.c,self.c) def __repr__(self): return str(self.a)+"√"+str(self.b)+"/"+str(self.c) def yog(b,c,cosA): return (b**2+c**2-Real(2)*b*c*cosA).sqrt() def inv_yog(a,b,c): return (b**2+c**2-a**2)/(Real(2)*b*c) def f(a,b,c,x,y): a=Real(a) b=Real(b) c=Real(c) x=Real(x) y=Real(y) cosB=inv_yog(c,b,x+a+y) AD=yog(b,x,cosB) res=inv_yog(x,b,AD) return res a=II() b=II() c=II() if b