#include "bits/stdc++.h" #include #include using namespace std; using namespace atcoder; // clang-format off /* accelration */ // 高速バイナリ生成 #pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") // cin cout の結びつけ解除, stdioと同期しない(入出力非同期化) // cとstdの入出力を混在させるとバグるので注意 struct Fast { Fast() { std::cin.tie(0); ios::sync_with_stdio(false); } } fast; using mint9 = modint998244353; /* alias */ using ull = unsigned long long; using ll = long long; using vi = vector; using vl = vector; using vll = vector; using vvi = vector; using vvl = vector; using vvll = vector; using vvvll = vector; using vd = vector; using vs = vector; using pii = pair; using pll = pair; using pdd = pair; using vb = vector; using vvb = vector; using vpii = vector; using vpll = vector; using vpdd = vector; using vm = vector; using vvm = vector; using vvvm = vector; using vs = vector; /* define short */ #define pb push_back // #define mp make_pair #define all(obj) (obj).begin(), (obj).end() #define YESNO(bool) if(bool){cout<<"YES"<=0;i--) #define rrepd(i,n) for(ll i=n;i>=1;i--) #define repsd(i, a, n) for(ll i=n;i>=a;i--) #define fore(i,a) for(auto &i:a) /* 追加分 */ #define vsort(v) sort(v.begin(), v.end()) #define verase(v) v.erase(unique(v.begin(), v.end()), v.end()) #define vlb(v, x) lower_bound(v.begin(), v.end(), x) - v.begin() #define argsort(v) sort(xy.begin(), xy.end(), [](const auto &p1, const auto &p2) { return atan2l(p1.second, p1.first) < atan2l(p2.second, p2.first);}) /* debug */ // 標準エラー出力を含む提出はrejectされる場合もあるので注意 #define debug(x) cerr << "\033[33m(line:" << __LINE__ << ") " << #x << ": " << x << "\033[m" << endl; /* int128 */ #define __int128_t ll /* func */ inline int in_int() { int x; cin >> x; return x; } inline ll in_ll() { ll x; cin >> x; return x; } inline string in_str() { string x; cin >> x; return x; } // search_length: 走査するベクトル長の上限(先頭から何要素目までを検索対象とするか、1始まりで) template inline bool vector_finder(std::vector vec, T element, unsigned int search_length) { auto itr = std::find(vec.begin(), vec.end(), element); size_t index = std::distance(vec.begin(), itr); if (index == vec.size() || index >= search_length) { return false; } else { return true; } } template inline void print(const vector& v, string s = " ") { rep(i, v.size()) cout << v[i] << (i != (ll)v.size() - 1 ? s : "\n"); } template inline void print(const pair& p) { cout << p.first << " " << p.second << endl; } template inline void print(const T& x) { cout << x << "\n"; } inline void printd(double x) { cout << fixed << setprecision(15) << x << endl; } template inline void print(const vector>& v) { for (auto&& p : v) print(p); } // 第一引数と第二引数を比較し、第一引数(a)をより大きい/小さい値に上書き template inline bool chmin(T& a, const T& b) { bool compare = a > b; if (a > b) a = b; return compare; } template inline bool chmax(T& a, const T& b) { bool compare = a < b; if (a < b) a = b; return compare; } // gcd lcm // C++17からは標準実装 // template T gcd(T a, T b) {if (b == 0)return a; else return gcd(b, a % b);} // template inline T lcm(T a, T b) {return (a * b) / gcd(a, b);} // clang-format on // 提出の際はコメントアウトすること // #define __builtin_ctzll _tzcnt_u64 int alt__builtin_clz(unsigned int x) { int rank = 0; while (x) { rank++; x >>= 1; } return 32 - rank; } static inline int alt__builtin_ctz(unsigned int x) { rep(i, 32) { if (x & 1) return i; x >>= 1; } } static inline int alt__builtin_ctzll(unsigned long long x) { rep(i, 64) { if (x & 1) return i; x >>= 1; } } template< typename T = int > struct Edge { int from, to; T cost; int idx; Edge() = default; Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {} operator int() const { return to; } }; template< typename T = int > struct Graph { vector< vector< Edge< T > > > g; int es; Graph() = default; explicit Graph(int n) : g(n), es(0) {} size_t size() const { return g.size(); } void add_directed_edge(int from, int to, T cost = 1) { g[from].emplace_back(from, to, cost, es++); } void add_edge(int from, int to, T cost = 1) { g[from].emplace_back(from, to, cost, es); g[to].emplace_back(to, from, cost, es++); } void read(int M, int padding = -1, bool weighted = false, bool directed = false) { for (int i = 0; i < M; i++) { int a, b; cin >> a >> b; a += padding; b += padding; T c = T(1); if (weighted) cin >> c; if (directed) add_directed_edge(a, b, c); else add_edge(a, b, c); } } inline vector< Edge< T > >& operator[](const int& k) { return g[k]; } inline const vector< Edge< T > >& operator[](const int& k) const { return g[k]; } }; template< typename T = int > using Edges = vector< Edge< T > >; template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {} Matrix(size_t n) : A(n, vector< T >(n, 0)) {}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector< T >& operator[](int k) const { return (A.at(k)); } inline vector< T >& operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix& operator+=(const Matrix& B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix& operator-=(const Matrix& B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix& operator*=(const Matrix& B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix& operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix& B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix& B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix& B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream& operator<<(ostream& os, Matrix& p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; template struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = (u64(0) - u64(mod)) % mod; static_assert(r* mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t& b) : a(reduce(u64(b% mod + mod)* n2)) {}; static constexpr u32 reduce(const u64& b) { return (b + u64(u32(b) * u32(u32(0) - r)) * mod) >> 32; } constexpr mint& operator+=(const mint& b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint& operator-=(const mint& b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint& operator*=(const mint& b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint& operator/=(const mint& b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint& b) const { return mint(*this) += b; } constexpr mint operator-(const mint& b) const { return mint(*this) -= b; } constexpr mint operator*(const mint& b) const { return mint(*this) *= b; } constexpr mint operator/(const mint& b) const { return mint(*this) /= b; } constexpr bool operator==(const mint& b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint& b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.get(); } friend istream& operator>>(istream& is, mint& b) { int64_t t; is >> t; b = LazyMontgomeryModInt(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template struct NTT { static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = 23; mint dw[level], dy[level]; void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } NTT() { setwy(level); } void fft4(vector& a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } // jh >= 1 mint ww = one, xx = one * dw[2], wx = one; for (int jh = 4; jh < u;) { ww = xx * xx, wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww, t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[alt__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector& a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } // jh >= 1 mint ww = one, xx = one * dy[2], yy = one; u <<= 2; for (int jh = 4; jh < u;) { ww = xx * xx, yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[alt__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if (k & 1) { u = 1 << (k - 1); for (int j = 0; j < u; ++j) { mint ajv = a[j] - a[j + u]; a[j] += a[j + u]; a[j + u] = ajv; } } } void ntt(vector& a) { if ((int)a.size() <= 1) return; fft4(a, alt__builtin_ctz(a.size())); } void intt(vector& a) { if ((int)a.size() <= 1) return; ifft4(a, alt__builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for (auto& x : a) x *= iv; } vector multiply(const vector& a, const vector& b) { int l = a.size() + b.size() - 1; if (min(a.size(), b.size()) <= 40) { vector s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; setwy(k); vector s(M), t(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(s, k); fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; ifft4(s, k); s.resize(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } void ntt_doubling(vector& a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) b[i] *= r, r *= zeta; ntt(b); copy(begin(b), end(b), back_inserter(a)); } }; template struct FormalPowerSeries : vector { using vector::vector; using FPS = FormalPowerSeries; FPS& operator+=(const FPS& r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS& operator+=(const mint& r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS& operator-=(const FPS& r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS& operator-=(const mint& r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS& operator*=(const mint& v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS& operator/=(const FPS& r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto& x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS& operator%=(const FPS& r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS& r) const { return FPS(*this) += r; } FPS operator+(const mint& v) const { return FPS(*this) += v; } FPS operator-(const FPS& r) const { return FPS(*this) -= r; } FPS operator-(const mint& v) const { return FPS(*this) -= v; } FPS operator*(const FPS& r) const { return FPS(*this) *= r; } FPS operator*(const mint& v) const { return FPS(*this) *= v; } FPS operator/(const FPS& r) const { return FPS(*this) /= r; } FPS operator%(const FPS& r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto& v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } static void* ntt_ptr; static void set_fft(); FPS& operator*=(const FPS& r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template void* FormalPowerSeries::ntt_ptr = nullptr; template void FormalPowerSeries::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT; } template FormalPowerSeries& FormalPowerSeries::operator*=( const FormalPowerSeries& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries(ret.begin(), ret.end()); } template void FormalPowerSeries::ntt() { set_fft(); static_cast*>(ntt_ptr)->ntt(*this); } template void FormalPowerSeries::intt() { set_fft(); static_cast*>(ntt_ptr)->intt(*this); } template void FormalPowerSeries::ntt_doubling() { set_fft(); static_cast*>(ntt_ptr)->ntt_doubling(*this); } template int FormalPowerSeries::ntt_pr() { set_fft(); return static_cast*>(ntt_ptr)->pr; } template FormalPowerSeries FormalPowerSeries::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries res(deg); res[0] = { mint(1) / (*this)[0] }; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template FormalPowerSeries FormalPowerSeries::exp(int deg) const { using fps = FormalPowerSeries; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{ 1, 1 < (int)this->size() ? (*this)[1] : 0 }, c{ 1 }, z1, z2{ 1, 1 }; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min(this->size(), m)); x.resize(m); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{ begin(b), begin(b) + deg }; } template inline void print(const FormalPowerSeries& v, string s = " ") { rep(i, v.size()) cout << v[i] << (i != (ll)v.size() - 1 ? s : "\n"); } using mint = LazyMontgomeryModInt<998244353>; using fps = FormalPowerSeries; // 定数 const ll INF = 1ll << 60; const vi dd({ -1,0,1,0,-1 }); const double PI = atan(1) * 4; double eps = 1e-10; const ll MOD = 998244353; // 最大公約数 ll gcd(ll a, ll b) { if (!b) return a; if (a % b == 0) return b; else return gcd(b, a % b); } // 最小公倍数 ll lcm(ll a, ll b) { return a * b / gcd(a, b); } // インタラクティブ用 void question(vll v) { cout << "?"; rep(i, v.size()) { cout << " " << v[i]; } cout << endl; } void answer(vll v) { cout << "!"; rep(i, v.size()) { cout << " " << v[i]; } cout << endl; } // 等差数列 ll arith_sum1(ll left, ll right, ll d) { return (left + right) * (right - left + d) / (2 * d); } ll arith_sum2(ll left, ll d, ll num) { return arith_sum1(left, left + d * (num - 1), d); } // 座標圧縮 void comp(vll& a) { sort(a.begin(), a.end()); a.erase(unique(a.begin(), a.end()), a.end()); } // 区間min(+idx)遅延セグ木テンプレート struct S { ll val, idx; }; struct F { ll x; }; S min_op(S l, S r) { if (l.val < r.val) return l; else return r; } S min_e() { return { INF, -1 }; } S max_op(S l, S r) { if (l.val > r.val) return l; else return r; } S max_e() { return { -INF, -1 }; } S mapping(F l, S r) { return { l.x + r.val, r.idx }; } F composition(F l, F r) { return { l.x + r.x }; } F id() { return { 0 }; } S plus_op(S l, S r) { S ans{ l.val + r.val, 0ll }; return ans; } S plus_e() { return { 0, -1 }; } //lazy_segtree seg(n); ll n, m, q; struct S2 { ll val; ll len; }; S2 op2(S2 l, S2 r) { ll len = l.len + r.len; ll val = l.val*pow_mod(m, r.len, MOD)+r.val; val %= MOD; return { val, len }; } S2 e2() { return { 0,0 }; } S2 mapping2(F l, S2 r) { return { l.x + r.val, r.len }; } int main() { cin >> n >> m >> q; vll a(n); rep(i, n) cin >> a[i]; vm cum(n + 1); repd(i, n) cum[i + 1] = cum[i] + (a[i]-1) * pow_mod(m, n-i-1, MOD); lazy_segtree seg(n); rep(i, n) seg.set(i, { a[i] - 1, 1 }); while (q--) { ll l, r; cin >> l >> r; l--; print((seg.prod(l, r).val+1)%MOD); } }