#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template std::pair operator+(const std::pair &l, const std::pair &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template std::pair operator-(const std::pair &l, const std::pair &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template std::vector sort_unique(std::vector vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template int arglb(const std::vector &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template int argub(const std::vector &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template IStream &operator>>(IStream &is, std::vector &vec) { for (auto &v : vec) is >> v; return is; } template OStream &operator<<(OStream &os, const std::vector &vec); template OStream &operator<<(OStream &os, const std::array &arr); template OStream &operator<<(OStream &os, const std::unordered_set &vec); template OStream &operator<<(OStream &os, const pair &pa); template OStream &operator<<(OStream &os, const std::deque &vec); template OStream &operator<<(OStream &os, const std::set &vec); template OStream &operator<<(OStream &os, const std::multiset &vec); template OStream &operator<<(OStream &os, const std::unordered_multiset &vec); template OStream &operator<<(OStream &os, const std::pair &pa); template OStream &operator<<(OStream &os, const std::map &mp); template OStream &operator<<(OStream &os, const std::unordered_map &mp); template OStream &operator<<(OStream &os, const std::tuple &tpl); template OStream &operator<<(OStream &os, const std::vector &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::array &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template std::istream &operator>>(std::istream &is, std::tuple &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template OStream &operator<<(OStream &os, const std::tuple &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template OStream &operator<<(OStream &os, const std::unordered_set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::deque &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::pair &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template OStream &operator<<(OStream &os, const std::map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif uint32_t rand_int() // XorShift random integer generator { static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123; uint32_t t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } double rand_double() { return (double)rand_int() / UINT32_MAX; } #include #include #include #include #include namespace SPRP { // http://miller-rabin.appspot.com/ const std::vector> bases{ {126401071349994536}, // < 291831 {336781006125, 9639812373923155}, // < 1050535501 (1e9) {2, 2570940, 211991001, 3749873356}, // < 47636622961201 (4e13) {2, 325, 9375, 28178, 450775, 9780504, 1795265022} // <= 2^64 }; inline int get_id(long long n) { if (n < 291831) { return 0; } else if (n < 1050535501) { return 1; } else if (n < 47636622961201) return 2; else { return 3; } } } // namespace SPRP // Miller-Rabin primality test // https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%A9%E3%83%BC%E2%80%93%E3%83%A9%E3%83%93%E3%83%B3%E7%B4%A0%E6%95%B0%E5%88%A4%E5%AE%9A%E6%B3%95 // Complexity: O(lg n) per query struct { long long modpow(__int128 x, __int128 n, long long mod) noexcept { __int128 ret = 1; for (x %= mod; n; x = x * x % mod, n >>= 1) ret = (n & 1) ? ret * x % mod : ret; return ret; } bool operator()(long long n) noexcept { if (n < 2) return false; if (n % 2 == 0) return n == 2; int s = __builtin_ctzll(n - 1); for (__int128 a : SPRP::bases[SPRP::get_id(n)]) { if (a % n == 0) continue; a = modpow(a, (n - 1) >> s, n); bool may_composite = true; if (a == 1) continue; for (int r = s; r--; a = a * a % n) { if (a == n - 1) may_composite = false; } if (may_composite) return false; } return true; } } is_prime; struct { // Pollard's rho algorithm: find factor greater than 1 long long find_factor(long long n) { assert(n > 1); if (n % 2 == 0) return 2; if (is_prime(n)) return n; long long c = 1; auto f = [&](__int128 x) -> long long { return (x * x + c) % n; }; for (int t = 1;; t++) { for (c = 0; c == 0 or c + 2 == n;) c = rand_int() % n; long long x0 = t, m = std::max(n >> 3, 1LL), x, ys, y = x0, r = 1, g, q = 1; do { x = y; for (int i = r; i--;) y = f(y); long long k = 0; do { ys = y; for (int i = std::min(m, r - k); i--;) y = f(y), q = __int128(q) * std::abs(x - y) % n; g = std::__gcd(q, n); k += m; } while (k < r and g <= 1); r <<= 1; } while (g <= 1); if (g == n) { do { ys = f(ys); g = std::__gcd(std::abs(x - ys), n); } while (g <= 1); } if (g != n) return g; } } std::vector operator()(long long n) { std::vector ret; while (n > 1) { long long f = find_factor(n); if (f < n) { auto tmp = operator()(f); ret.insert(ret.end(), tmp.begin(), tmp.end()); } else ret.push_back(n); n /= f; } std::sort(ret.begin(), ret.end()); return ret; } long long euler_phi(long long n) { long long ret = 1, last = -1; for (auto p : this->operator()(n)) ret *= p - (last != p), last = p; return ret; } } FactorizeLonglong; #include #include #include #include template struct ModInt { using lint = long long; constexpr static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val_; int val() const noexcept { return val_; } constexpr ModInt() : val_(0) {} constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; } constexpr ModInt(lint v) { _setval(v % md + md); } constexpr explicit operator bool() const { return val_ != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val_ + x.val_); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val_ - x.val_ + md); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.val_ % md); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.inv().val() % md); } constexpr ModInt operator-() const { return ModInt()._setval(md - val_); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % md + x.val_); } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % md - x.val_ + md); } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.val_ % md); } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.inv().val() % md); } constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; } constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; } constexpr bool operator<(const ModInt &x) const { return val_ < x.val_; } // To use std::map friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val_; } constexpr ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static constexpr int cache_limit = std::min(md, 1 << 21); static std::vector facs, facinvs, invs; constexpr static void _precalculation(int N) { const int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } constexpr ModInt inv() const { if (this->val_ < cache_limit) { if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0}; while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val_]; } else { return this->pow(md - 2); } } constexpr ModInt fac() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val_]; } constexpr ModInt facinv() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val_]; } constexpr ModInt doublefac() const { lint k = (this->val_ + 1) / 2; return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } constexpr ModInt nCr(int r) const { if (r < 0 or this->val_ < r) return ModInt(0); return this->fac() * (*this - r).facinv() * ModInt(r).facinv(); } constexpr ModInt nPr(int r) const { if (r < 0 or this->val_ < r) return ModInt(0); return this->fac() * (*this - r).facinv(); } static ModInt binom(int n, int r) { static long long bruteforce_times = 0; if (r < 0 or n < r) return ModInt(0); if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r); r = std::min(r, n - r); ModInt ret = ModInt(r).facinv(); for (int i = 0; i < r; ++i) ret *= n - i; bruteforce_times += r; return ret; } // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!) // Complexity: O(sum(ks)) template static ModInt multinomial(const Vec &ks) { ModInt ret{1}; int sum = 0; for (int k : ks) { assert(k >= 0); ret *= ModInt(k).facinv(), sum += k; } return ret * ModInt(sum).fac(); } // Catalan number, C_n = binom(2n, n) / (n + 1) // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ... // https://oeis.org/A000108 // Complexity: O(n) static ModInt catalan(int n) { if (n < 0) return ModInt(0); return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv(); } ModInt sqrt() const { if (val_ == 0) return 0; if (md == 2) return val_; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val_, md - x.val_)); } }; template std::vector> ModInt::facs = {1}; template std::vector> ModInt::facinvs = {1}; template std::vector> ModInt::invs = {0}; using mint = ModInt<998244353>; long long m; vector> facs; // Fast Walsh-Hadamard transform and its abstraction // Tutorials: // template void abstract_fwht(std::vector &seq, F f) { const int n = seq.size(); assert(__builtin_popcount(n) == 1); for (int w = 1; w < n; w *= 2) { for (int i = 0; i < n; i += w * 2) { for (int j = 0; j < w; j++) { f(seq[i + j], seq[i + j + w]); } } } } template std::vector bitwise_conv(std::vector x, std::vector y, F1 f, F2 finv) { const int n = x.size(); assert(__builtin_popcount(n) == 1); assert(x.size() == y.size()); if (x == y) { abstract_fwht(x, f), y = x; } else { abstract_fwht(x, f), abstract_fwht(y, f); } for (size_t i = 0; i < x.size(); i++) { x[i] *= y[i]; } abstract_fwht(x, finv); return x; } // bitwise OR convolution // ret[i] = \sum_{(j | k) == i} x[j] * y[k] template std::vector orconv(std::vector x, std::vector y) { return bitwise_conv( x, y, [](T &lo, T &hi) { hi += lo; }, [](T &lo, T &hi) { hi -= lo; }); } mint solve() { int n; mint B, C, D; cin >> n >> B >> C >> D; vector A(n); cin >> A; dbg(A); vector F(facs.size(), vector(n)); vector is_bad(n); REP(i, n) { lint a = A.at(i); int t = -1; for (auto [p, d] : facs) { ++t; int e = 0; while (a % p == 0) a /= p, e++; if (e > d) is_bad.at(i) = true; if (e == d) F.at(t).at(i) = true; } if (a > 1) is_bad.at(i) = true; } dbg(is_bad); vector dp(1 << facs.size(), 1); using T = mint; auto func = [](T &lo, T &hi) { hi += lo; }; auto func_inv = [](T &lo, T &hi) { hi -= lo; }; mint W = B; int n1 = 0; REP(i, n) { if (A.at(i) == 1) n1++; int s = 0; REP(d, facs.size()) { if (F.at(d).at(i)) s |= 1 << d; } if (!is_bad.at(i)) dp.at(s) *= W + 1; W = W * C + D; } REP(d, facs.size()) { REP(i, dp.size()) { if (i & (1 << d)) dp.at(i) *= dp.at(i ^ (1 << d)); } } abstract_fwht(dp, func_inv); // dbg(is_bad); return dp.back() - (m == 1 ? 1 : 0); } int main() { int T; cin >> T >> m; auto factors = FactorizeLonglong(m); sort(factors.begin(), factors.end()); dbg(factors); for (auto p : factors) { if (facs.empty() or facs.back().first != p) { facs.emplace_back(p, 0); } facs.back().second++; } dbg(facs); while (T--) cout << solve() << '\n'; }