#include using namespace std; using ll = long long; using ld = long double; using ull = unsigned long long; using pll = pair; using tlll = tuple; constexpr ll INF = 1LL << 60; template bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;} template bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;} ll safemod(ll A, ll M) {ll res = A % M; if (res < 0) res += M; return res;} ll divfloor(ll A, ll B) {if (B < 0) A = -A, B = -B; return (A - safemod(A, B)) / B;} ll divceil(ll A, ll B) {if (B < 0) A = -A, B = -B; return divfloor(A + B - 1, B);} ll pow_ll(ll A, ll B) {if (A == 0 || A == 1) {return A;} if (A == -1) {return B & 1 ? -1 : 1;} ll res = 1; for (int i = 0; i < B; i++) {res *= A;} return res;} ll mul_limited(ll A, ll B, ll M = INF) { return B == 0 ? 0 : A > M / B ? M : A * B; } ll pow_limited(ll A, ll B, ll M = INF) { if (A == 0 || A == 1) {return A;} ll res = 1; for (int i = 0; i < B; i++) {if (res > M / A) return M; res *= A;} return res;} template void unique(vector &V) {V.erase(unique(V.begin(), V.end()), V.end());} template void sortunique(vector &V) {sort(V.begin(), V.end()); V.erase(unique(V.begin(), V.end()), V.end());} #define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false) template void printvec(const vector &V) {int _n = V.size(); for (int i = 0; i < _n; i++) cout << V[i] << (i == _n - 1 ? "" : " ");cout << '\n';} template void printvect(const vector &V) {for (auto v : V) cout << v << '\n';} template void printvec2(const vector> &V) {for (auto &v : V) printvec(v);} //* #include using namespace atcoder; using mint = modint998244353; //using mint = modint1000000007; //using mint = modint; //*/ // https://nyaannyaan.github.io/library/multiplicative-function/divisor-multiple-transform.hpp.html struct ZetaMobiusDivisorMultiple { ll n; vector ds, ps; ZetaMobiusDivisorMultiple() {} ZetaMobiusDivisorMultiple(ll n) : n(n) { for (ll d = 1; d * d <= n; d++) { if (n % d == 0) { ds.emplace_back(d); if (d * d != n) ds.emplace_back(n / d); } } sort(ds.begin(), ds.end()); for (ll p = 2; p * p <= n; p++) { if (n % p == 0) { ps.emplace_back(p); while (n % p == 0) n /= p; } } if (n != 1) ps.emplace_back(n); } // d から f(d) を計算する関数を受け取って、実際に全部の d について計算した unordered_map を返す template unordered_map func_to_unordered_map(const function &f) const { unordered_map res; for (auto d : ds) res[d] = f(d); return res; } // ζa(n) = Σ{d | n} a(d) template unordered_map zeta_divisor(const unordered_map &A) const { unordered_map B(A); for (auto &p : ps) { for (auto &d : ds) { if (d > n / p) break; if (n % (d * p) == 0) B[d * p] += B[d]; } } return B; } // μ は ζ の逆変換 // μa(n) = Σ{d | n} μ(n/d)a(d) cf. メビウスの反転公式 template unordered_map mobius_divisor(const unordered_map &A) const { unordered_map B(A); for (auto &p : ps) { for (int i = (int)ds.size() - 1; i >= 0; i--) { ll d = ds[i]; if (d > n / p) continue; if (n % (d * p) == 0) B[d * p] -= B[d]; } } return B; } // ζ'a(n) = Σ{n | m} a(m) template unordered_map zeta_multiple(const unordered_map &A) const { unordered_map B(A); for (auto &p : ps) { for (int i = (int)ds.size() - 1; i >= 0; i--) { ll d = ds[i]; if (d > n / p) continue; if (n % (d * p) == 0) B[d] += B[d * p]; } } return B; } // μ' は ζ' の逆変換 // μ'a(n) = Σ{n | m} μ(m/n)g(m) template unordered_map mobius_multiple(const unordered_map &A) const { unordered_map B(A); for (auto &p : ps) { for (auto &d : ds) { if (d > n / p) break; if (n % (d * p) == 0) B[d] -= B[d * p]; } } return B; } }; int main() { ll N, M; cin >> N >> M; ZetaMobiusDivisorMultiple zmdm(M); unordered_map sigma = zmdm.zeta_divisor(zmdm.func_to_unordered_map([&](ll) -> mint { return 1; })); unordered_map res = zmdm.mobius_divisor(zmdm.func_to_unordered_map([&](ll d) -> mint { return sigma[d].pow(N); })); mint ans = res[M]; cout << ans.val() << endl; }