/** * date : 2023-12-08 01:10:54 * author : Nyaan */ #define NDEBUG using namespace std; // intrinstic #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template using V = vector; template using VV = vector>; using vi = vector; using vl = vector; using vd = V; using vs = V; using vvi = vector>; using vvl = vector>; template using minpq = priority_queue, greater>; template struct P : pair { template P(Args... args) : pair(args...) {} using pair::first; using pair::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P; using pi = P; using vp = V; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template int sz(const T &t) { return t.size(); } template inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template inline T Max(const vector &v) { return *max_element(begin(v), end(v)); } template inline T Min(const vector &v) { return *min_element(begin(v), end(v)); } template inline long long Sum(const vector &v) { return accumulate(begin(v), end(v), 0LL); } template int lb(const vector &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template int ub(const vector &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template pair mkp(const T &t, const U &u) { return make_pair(t, u); } template vector mkrui(const vector &v, bool rev = false) { vector ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template vector mkuni(const vector &v) { vector ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template vector mkord(int N, F f) { vector ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template vector mkinv(vector &v) { int max_val = *max_element(begin(v), end(v)); vector inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector mkiota(int n) { vector ret(n); iota(begin(ret), end(ret), 0); return ret; } template T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template bool nxp(vector &v) { return next_permutation(begin(v), end(v)); } // 返り値の型は入力の T に依存 // i 要素目 : [0, a[i]) template vector> product(const vector &a) { vector> ret; vector v; auto dfs = [&](auto rc, int i) -> void { if (i == (int)a.size()) { ret.push_back(v); return; } for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back(); }; dfs(dfs, 0); return ret; } // F : function(void(T&)), mod を取る操作 // T : 整数型のときはオーバーフローに注意する template T Power(T a, long long n, const T &I, const function &f) { T res = I; for (; n; f(a = a * a), n >>= 1) { if (n & 1) f(res = res * a); } return res; } // T : 整数型のときはオーバーフローに注意する template T Power(T a, long long n, const T &I = T{1}) { return Power(a, n, I, function{[](T &) -> void {}}); } template T Rev(const T &v) { T res = v; reverse(begin(res), end(res)); return res; } template vector Transpose(const vector &v) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { res[j][i] = v[i][j]; } } return res; } template vector Rotate(const vector &v, int clockwise = true) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { if (clockwise) { res[W - 1 - j][i] = v[i][j]; } else { res[j][H - 1 - i] = v[i][j]; } } } return res; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template inline int gbit(const T &a, int i) { return (a >> i) & 1; } template inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template ostream &operator<<(ostream &os, const pair &p) { os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #else #define trc(...) (void(0)) #endif #ifdef NyaanLocal #define trc2(...) (void(0)) #else #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // using namespace std; using namespace std; namespace internal { template using is_broadly_integral = typename conditional_t || is_same_v || is_same_v, true_type, false_type>::type; template using is_broadly_signed = typename conditional_t || is_same_v, true_type, false_type>::type; template using is_broadly_unsigned = typename conditional_t || is_same_v, true_type, false_type>::type; #define ENABLE_VALUE(x) \ template \ constexpr bool x##_v = x::value; ENABLE_VALUE(is_broadly_integral); ENABLE_VALUE(is_broadly_signed); ENABLE_VALUE(is_broadly_unsigned); #undef ENABLE_VALUE #define ENABLE_HAS_TYPE(var) \ template \ struct has_##var : false_type {}; \ template \ struct has_##var> : true_type {}; \ template \ constexpr auto has_##var##_v = has_##var::value; #define ENABLE_HAS_VAR(var) \ template \ struct has_##var : false_type {}; \ template \ struct has_##var> : true_type {}; \ template \ constexpr auto has_##var##_v = has_##var::value; } // namespace internal template struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); static_assert(r * mod == 1, "this code has bugs."); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint operator+() const { return mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, u -= t * v; tmp = x, x = y, y = tmp; tmp = u, u = v, v = tmp; } return mint{u}; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template struct NTT { static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } NTT() { setwy(level); } void fft4(vector &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } // jh >= 1 mint ww = one, xx = one * dw[2], wx = one; for (int jh = 4; jh < u;) { ww = xx * xx, wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww, t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } // jh >= 1 mint ww = one, xx = one * dy[2], yy = one; u <<= 2; for (int jh = 4; jh < u;) { ww = xx * xx, yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if (k & 1) { u = 1 << (k - 1); for (int j = 0; j < u; ++j) { mint ajv = a[j] - a[j + u]; a[j] += a[j + u]; a[j + u] = ajv; } } } void ntt(vector &a) { if ((int)a.size() <= 1) return; fft4(a, __builtin_ctz(a.size())); } void intt(vector &a) { if ((int)a.size() <= 1) return; ifft4(a, __builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for (auto &x : a) x *= iv; } vector multiply(const vector &a, const vector &b) { int l = a.size() + b.size() - 1; if (min(a.size(), b.size()) <= 40) { vector s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; setwy(k); vector s(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; fft4(s, k); if (a.size() == b.size() && a == b) { for (int i = 0; i < M; ++i) s[i] *= s[i]; } else { vector t(M); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; } ifft4(s, k); s.resize(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } void ntt_doubling(vector &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) b[i] *= r, r *= zeta; ntt(b); copy(begin(b), end(b), back_inserter(a)); } }; namespace ArbitraryNTT { using i64 = int64_t; using u128 = __uint128_t; constexpr int32_t m0 = 167772161; constexpr int32_t m1 = 469762049; constexpr int32_t m2 = 754974721; using mint0 = LazyMontgomeryModInt; using mint1 = LazyMontgomeryModInt; using mint2 = LazyMontgomeryModInt; constexpr int r01 = mint1(m0).inverse().get(); constexpr int r02 = mint2(m0).inverse().get(); constexpr int r12 = mint2(m1).inverse().get(); constexpr int r02r12 = i64(r02) * r12 % m2; constexpr i64 w1 = m0; constexpr i64 w2 = i64(m0) * m1; template vector mul(const vector &a, const vector &b) { static NTT ntt; vector s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod()); for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod()); return ntt.multiply(s, t); } template vector multiply(const vector &s, const vector &t, int mod) { auto d0 = mul(s, t); auto d1 = mul(s, t); auto d2 = mul(s, t); int n = d0.size(); vector ret(n); const int W1 = w1 % mod; const int W2 = w2 % mod; for (int i = 0; i < n; i++) { int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get(); int b = i64(n1 + m1 - a) * r01 % m1; int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2; ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod; } return ret; } template vector multiply(const vector &a, const vector &b) { if (a.size() == 0 && b.size() == 0) return {}; if (min(a.size(), b.size()) < 128) { vector ret(a.size() + b.size() - 1); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j]; return ret; } vector s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get(); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get(); vector u = multiply(s, t, mint::get_mod()); vector ret(u.size()); for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]); return ret; } template vector multiply_u128(const vector &s, const vector &t) { if (s.size() == 0 && t.size() == 0) return {}; if (min(s.size(), t.size()) < 128) { vector ret(s.size() + t.size() - 1); for (int i = 0; i < (int)s.size(); ++i) for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j]; return ret; } auto d0 = mul(s, t); auto d1 = mul(s, t); auto d2 = mul(s, t); int n = d0.size(); vector ret(n); for (int i = 0; i < n; i++) { i64 n1 = d1[i].get(), n2 = d2[i].get(); i64 a = d0[i].get(); i64 b = (n1 + m1 - a) * r01 % m1; i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2; ret[i] = a + b * w1 + u128(c) * w2; } return ret; } } // namespace ArbitraryNTT namespace MultiPrecisionIntegerImpl { struct TENS { static constexpr int offset = 30; constexpr TENS() : _tend() { _tend[offset] = 1; for (int i = 1; i <= offset; i++) { _tend[offset + i] = _tend[offset + i - 1] * 10.0; _tend[offset - i] = 1.0 / _tend[offset + i]; } } long double ten_ld(int n) const { assert(-offset <= n and n <= offset); return _tend[n + offset]; } private: long double _tend[offset * 2 + 1]; }; } // namespace MultiPrecisionIntegerImpl // 0 は neg=false, dat={} として扱う struct MultiPrecisionInteger { using M = MultiPrecisionInteger; inline constexpr static MultiPrecisionIntegerImpl::TENS tens = {}; static constexpr int D = 1000000000; static constexpr int logD = 9; bool neg; vector dat; MultiPrecisionInteger() : neg(false), dat() {} MultiPrecisionInteger(bool n, const vector& d) : neg(n), dat(d) {} template >* = nullptr> MultiPrecisionInteger(I x) : neg(false) { if constexpr (internal::is_broadly_signed_v) { if (x < 0) neg = true, x = -x; } while (x) dat.push_back(x % D), x /= D; } MultiPrecisionInteger(const string& S) : neg(false) { assert(!S.empty()); if (S.size() == 1u && S[0] == '0') return; int l = 0; if (S[0] == '-') ++l, neg = true; for (int ie = S.size(); l < ie; ie -= logD) { int is = max(l, ie - logD); long long x = 0; for (int i = is; i < ie; i++) x = x * 10 + S[i] - '0'; dat.push_back(x); } } friend M operator+(const M& lhs, const M& rhs) { if (lhs.neg == rhs.neg) return {lhs.neg, _add(lhs.dat, rhs.dat)}; if (_leq(lhs.dat, rhs.dat)) { // |l| <= |r| auto c = _sub(rhs.dat, lhs.dat); bool n = _is_zero(c) ? false : rhs.neg; return {n, c}; } auto c = _sub(lhs.dat, rhs.dat); bool n = _is_zero(c) ? false : lhs.neg; return {n, c}; } friend M operator-(const M& lhs, const M& rhs) { return lhs + (-rhs); } friend M operator*(const M& lhs, const M& rhs) { auto c = _mul(lhs.dat, rhs.dat); bool n = _is_zero(c) ? false : (lhs.neg ^ rhs.neg); return {n, c}; } friend pair divmod(const M& lhs, const M& rhs) { auto dm = _divmod_newton(lhs.dat, rhs.dat); bool dn = _is_zero(dm.first) ? false : lhs.neg != rhs.neg; bool mn = _is_zero(dm.second) ? false : lhs.neg; return {M{dn, dm.first}, M{mn, dm.second}}; } friend M operator/(const M& lhs, const M& rhs) { return divmod(lhs, rhs).first; } friend M operator%(const M& lhs, const M& rhs) { return divmod(lhs, rhs).second; } M& operator+=(const M& rhs) { return (*this) = (*this) + rhs; } M& operator-=(const M& rhs) { return (*this) = (*this) - rhs; } M& operator*=(const M& rhs) { return (*this) = (*this) * rhs; } M& operator/=(const M& rhs) { return (*this) = (*this) / rhs; } M& operator%=(const M& rhs) { return (*this) = (*this) % rhs; } M operator-() const { if (is_zero()) return *this; return {!neg, dat}; } M operator+() const { return *this; } friend M abs(const M& m) { return {false, m.dat}; } bool is_zero() const { return _is_zero(dat); } friend bool operator==(const M& lhs, const M& rhs) { return lhs.neg == rhs.neg && lhs.dat == rhs.dat; } friend bool operator!=(const M& lhs, const M& rhs) { return lhs.neg != rhs.neg || lhs.dat != rhs.dat; } friend bool operator<(const M& lhs, const M& rhs) { if (lhs == rhs) return false; return _neq_lt(lhs, rhs); } friend bool operator<=(const M& lhs, const M& rhs) { if (lhs == rhs) return true; return _neq_lt(lhs, rhs); } friend bool operator>(const M& lhs, const M& rhs) { if (lhs == rhs) return false; return _neq_lt(rhs, lhs); } friend bool operator>=(const M& lhs, const M& rhs) { if (lhs == rhs) return true; return _neq_lt(rhs, lhs); } // a * 10^b (1 <= |a| < 10) の形で渡す // 相対誤差:10^{-16} ~ 10^{-19} 程度 (処理系依存) pair dfp() const { if (is_zero()) return {0, 0}; int l = max(0, _size() - 3); int b = logD * l; string prefix{}; for (int i = _size() - 1; i >= l; i--) { prefix += _itos(dat[i], i != _size() - 1); } b += prefix.size() - 1; long double a = 0; for (auto& c : prefix) a = a * 10.0 + (c - '0'); a *= tens.ten_ld(-((int)prefix.size()) + 1); a = clamp(a, 1.0, nextafterl(10.0, 1.0)); if (neg) a = -a; return {a, b}; } string to_string() const { if (is_zero()) return "0"; string res; if (neg) res.push_back('-'); for (int i = _size() - 1; i >= 0; i--) { res += _itos(dat[i], i != _size() - 1); } return res; } long double to_ld() const { auto [a, b] = dfp(); if (-tens.offset <= b and b <= tens.offset) { return a * tens.ten_ld(b); } return a * powl(10, b); } long long to_ll() const { long long res = _to_ll(dat); return neg ? -res : res; } __int128_t to_i128() const { __int128_t res = _to_i128(dat); return neg ? -res : res; } friend istream& operator>>(istream& is, M& m) { string s; is >> s; m = M{s}; return is; } friend ostream& operator<<(ostream& os, const M& m) { return os << m.to_string(); } // 内部の関数をテスト static void _test_private_function(const M&, const M&); private: // size int _size() const { return dat.size(); } // a == b static bool _eq(const vector& a, const vector& b) { return a == b; } // a < b static bool _lt(const vector& a, const vector& b) { if (a.size() != b.size()) return a.size() < b.size(); for (int i = a.size() - 1; i >= 0; i--) { if (a[i] != b[i]) return a[i] < b[i]; } return false; } // a <= b static bool _leq(const vector& a, const vector& b) { return _eq(a, b) || _lt(a, b); } // a < b (s.t. a != b) static bool _neq_lt(const M& lhs, const M& rhs) { assert(lhs != rhs); if (lhs.neg != rhs.neg) return lhs.neg; bool f = _lt(lhs.dat, rhs.dat); if (f) return !lhs.neg; return lhs.neg; } // a == 0 static bool _is_zero(const vector& a) { return a.empty(); } // a == 1 static bool _is_one(const vector& a) { return (int)a.size() == 1 && a[0] == 1; } // 末尾 0 を削除 static void _shrink(vector& a) { while (a.size() && a.back() == 0) a.pop_back(); } // 末尾 0 を削除 void _shrink() { while (_size() && dat.back() == 0) dat.pop_back(); } // a + b static vector _add(const vector& a, const vector& b) { vector c(max(a.size(), b.size()) + 1); for (int i = 0; i < (int)a.size(); i++) c[i] += a[i]; for (int i = 0; i < (int)b.size(); i++) c[i] += b[i]; for (int i = 0; i < (int)c.size() - 1; i++) { if (c[i] >= D) c[i] -= D, c[i + 1]++; } _shrink(c); return c; } // a - b static vector _sub(const vector& a, const vector& b) { assert(_leq(b, a)); vector c{a}; int borrow = 0; for (int i = 0; i < (int)a.size(); i++) { if (i < (int)b.size()) borrow += b[i]; c[i] -= borrow; borrow = 0; if (c[i] < 0) c[i] += D, borrow = 1; } assert(borrow == 0); _shrink(c); return c; } // a * b (fft) static vector _mul_fft(const vector& a, const vector& b) { if (a.empty() || b.empty()) return {}; auto m = ArbitraryNTT::multiply_u128(a, b); vector c; c.reserve(m.size() + 3); __uint128_t x = 0; for (int i = 0;; i++) { if (i >= (int)m.size() && x == 0) break; if (i < (int)m.size()) x += m[i]; c.push_back(x % D); x /= D; } _shrink(c); return c; } // a * b (naive) static vector _mul_naive(const vector& a, const vector& b) { if (a.empty() || b.empty()) return {}; vector prod(a.size() + b.size() - 1 + 1); for (int i = 0; i < (int)a.size(); i++) { for (int j = 0; j < (int)b.size(); j++) { long long p = 1LL * a[i] * b[j]; prod[i + j] += p; if (prod[i + j] >= (4LL * D * D)) { prod[i + j] -= 4LL * D * D; prod[i + j + 1] += 4LL * D; } } } vector c(prod.size() + 1); long long x = 0; int i = 0; for (; i < (int)prod.size(); i++) x += prod[i], c[i] = x % D, x /= D; while (x) c[i] = x % D, x /= D, i++; _shrink(c); return c; } // a * b static vector _mul(const vector& a, const vector& b) { if (_is_zero(a) || _is_zero(b)) return {}; if (_is_one(a)) return b; if (_is_one(b)) return a; if (min(a.size(), b.size()) <= 128) { return a.size() < b.size() ? _mul_naive(b, a) : _mul_naive(a, b); } return _mul_fft(a, b); } // 0 <= A < 1e18, 1 <= B < 1e9 static pair, vector> _divmod_li(const vector& a, const vector& b) { assert(0 <= (int)a.size() && (int)a.size() <= 2); assert((int)b.size() == 1); long long va = _to_ll(a); int vb = b[0]; return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)}; } // 0 <= A < 1e18, 1 <= B < 1e18 static pair, vector> _divmod_ll(const vector& a, const vector& b) { assert(0 <= (int)a.size() && (int)a.size() <= 2); assert(1 <= (int)b.size() && (int)b.size() <= 2); long long va = _to_ll(a), vb = _to_ll(b); return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)}; } // 1 <= B < 1e9 static pair, vector> _divmod_1e9(const vector& a, const vector& b) { assert((int)b.size() == 1); if (b[0] == 1) return {a, {}}; if ((int)a.size() <= 2) return _divmod_li(a, b); vector quo(a.size()); long long d = 0; int b0 = b[0]; for (int i = a.size() - 1; i >= 0; i--) { d = d * D + a[i]; assert(d < 1LL * D * b0); int q = d / b0, r = d % b0; quo[i] = q, d = r; } _shrink(quo); return {quo, d ? vector{int(d)} : vector{}}; } // 0 <= A, 1 <= B static pair, vector> _divmod_naive(const vector& a, const vector& b) { if (_is_zero(b)) { cerr << "Divide by Zero Exception" << endl; exit(1); } assert(1 <= (int)b.size()); if ((int)b.size() == 1) return _divmod_1e9(a, b); if (max(a.size(), b.size()) <= 2) return _divmod_ll(a, b); if (_lt(a, b)) return {{}, a}; // B >= 1e9, A >= B int norm = D / (b.back() + 1); vector x = _mul(a, {norm}); vector y = _mul(b, {norm}); int yb = y.back(); vector quo(x.size() - y.size() + 1); vector rem(x.end() - y.size(), x.end()); for (int i = quo.size() - 1; i >= 0; i--) { if (rem.size() < y.size()) { // do nothing } else if (rem.size() == y.size()) { if (_leq(y, rem)) { quo[i] = 1, rem = _sub(rem, y); } } else { assert(y.size() + 1 == rem.size()); long long rb = 1LL * rem[rem.size() - 1] * D + rem[rem.size() - 2]; int q = rb / yb; vector yq = _mul(y, {q}); // 真の商は q-2 以上 q+1 以下だが自信が無いので念のため while を回す while (_lt(rem, yq)) q--, yq = _sub(yq, y); rem = _sub(rem, yq); while (_leq(y, rem)) q++, rem = _sub(rem, y); quo[i] = q; } if (i) rem.insert(begin(rem), x[i - 1]); } _shrink(quo), _shrink(rem); auto [q2, r2] = _divmod_1e9(rem, {norm}); assert(_is_zero(r2)); return {quo, q2}; } // 0 <= A, 1 <= B static pair, vector> _divmod_dc(const vector& a, const vector& b); // 1 / a を 絶対誤差 B^{-deg} で求める static vector _calc_inv(const vector& a, int deg) { assert(!a.empty() && D / 2 <= a.back() and a.back() < D); int k = deg, c = a.size(); while (k > 64) k = (k + 1) / 2; vector z(c + k + 1); z.back() = 1; z = _divmod_naive(z, a).first; while (k < deg) { vector s = _mul(z, z); s.insert(begin(s), 0); int d = min(c, 2 * k + 1); vector t{end(a) - d, end(a)}, u = _mul(s, t); u.erase(begin(u), begin(u) + d); vector w(k + 1), w2 = _add(z, z); copy(begin(w2), end(w2), back_inserter(w)); z = _sub(w, u); z.erase(begin(z)); k *= 2; } z.erase(begin(z), begin(z) + k - deg); return z; } static pair, vector> _divmod_newton(const vector& a, const vector& b) { if (_is_zero(b)) { cerr << "Divide by Zero Exception" << endl; exit(1); } if ((int)b.size() <= 64) return _divmod_naive(a, b); if ((int)a.size() - (int)b.size() <= 64) return _divmod_naive(a, b); int norm = D / (b.back() + 1); vector x = _mul(a, {norm}); vector y = _mul(b, {norm}); int s = x.size(), t = y.size(); int deg = s - t + 2; vector z = _calc_inv(y, deg); vector q = _mul(x, z); q.erase(begin(q), begin(q) + t + deg); vector yq = _mul(y, {q}); while (_lt(x, yq)) q = _sub(q, {1}), yq = _sub(yq, y); vector r = _sub(x, yq); while (_leq(y, r)) q = _add(q, {1}), r = _sub(r, y); _shrink(q), _shrink(r); auto [q2, r2] = _divmod_1e9(r, {norm}); assert(_is_zero(r2)); return {q, q2}; } // int -> string // 先頭かどうかに応じて zero padding するかを決める static string _itos(int x, bool zero_padding) { assert(0 <= x && x < D); string res; for (int i = 0; i < logD; i++) { res.push_back('0' + x % 10), x /= 10; } if (!zero_padding) { while (res.size() && res.back() == '0') res.pop_back(); assert(!res.empty()); } reverse(begin(res), end(res)); return res; } // convert ll to vec template >* = nullptr> static vector _integer_to_vec(I x) { if constexpr (internal::is_broadly_signed_v) { assert(x >= 0); } vector res; while (x) res.push_back(x % D), x /= D; return res; } static long long _to_ll(const vector& a) { long long res = 0; for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i]; return res; } static __int128_t _to_i128(const vector& a) { __int128_t res = 0; for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i]; return res; } static void _dump(const vector& a, string s = "") { if (!s.empty()) cerr << s << " : "; cerr << "{ "; for (int i = 0; i < (int)a.size(); i++) cerr << a[i] << ", "; cerr << "}" << endl; } }; using bigint = MultiPrecisionInteger; /** * @brief 多倍長整数 */ // using namespace std; // コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」 // を入れると倍速くらいになる // mod を超えて前計算して 0 割りを踏むバグは対策済み template struct Binomial { vector f, g, h; Binomial(int MAX = 0) { assert(T::get_mod() != 0 && "Binomial()"); f.resize(1, T{1}); g.resize(1, T{1}); h.resize(1, T{1}); if (MAX > 0) extend(MAX + 1); } void extend(int m = -1) { int n = f.size(); if (m == -1) m = n * 2; m = min(m, T::get_mod()); if (n >= m) return; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template T multinomial(const vector& r) { static_assert(is_integral::value == true); int n = 0; for (auto& x : r) { if (x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template T operator()(const vector& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } // [x^r] 1 / (1-x)^n T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; // given : y(x=0) , y(x=1) , ... , y(k) // return : y(x) template mint lagrange_interpolation(const vector& y, long long x, Binomial& C) { int N = (int)y.size() - 1; if (x <= N) return y[x]; mint ret = 0; vector dp(N + 1, 1), pd(N + 1, 1); mint a = x, one = 1; for (int i = 0; i < N; i++) dp[i + 1] = dp[i] * a, a -= one; for (int i = N; i > 0; i--) pd[i - 1] = pd[i] * a, a += one; for (int i = 0; i <= N; i++) { mint tmp = y[i] * dp[i] * pd[i] * C.finv(i) * C.finv(N - i); ret += ((N - i) & 1) ? -tmp : tmp; } return ret; } template struct FormalPowerSeries : vector { using vector::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする FPS pre(int sz) const { FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz)); if ((int)ret.size() < sz) ret.resize(sz); return ret; } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert(!(*this).empty() && (*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template void *FormalPowerSeries::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/fps/formal-power-series.md */ template struct ProductTree { using fps = FormalPowerSeries; const vector &xs; vector buf; int N, xsz; vector l, r; ProductTree(const vector &xs_) : xs(xs_), xsz(xs.size()) { N = 1; while (N < (int)xs.size()) N *= 2; buf.resize(2 * N); l.resize(2 * N, xs.size()); r.resize(2 * N, xs.size()); fps::set_fft(); if (fps::ntt_ptr == nullptr) build(); else build_ntt(); } void build() { for (int i = 0; i < xsz; i++) { l[i + N] = i; r[i + N] = i + 1; buf[i + N] = {-xs[i], 1}; } for (int i = N - 1; i > 0; i--) { l[i] = l[(i << 1) | 0]; r[i] = r[(i << 1) | 1]; if (buf[(i << 1) | 0].empty()) continue; else if (buf[(i << 1) | 1].empty()) buf[i] = buf[(i << 1) | 0]; else buf[i] = buf[(i << 1) | 0] * buf[(i << 1) | 1]; } } void build_ntt() { fps f; f.reserve(N * 2); for (int i = 0; i < xsz; i++) { l[i + N] = i; r[i + N] = i + 1; buf[i + N] = {-xs[i] + 1, -xs[i] - 1}; } for (int i = N - 1; i > 0; i--) { l[i] = l[(i << 1) | 0]; r[i] = r[(i << 1) | 1]; if (buf[(i << 1) | 0].empty()) continue; else if (buf[(i << 1) | 1].empty()) buf[i] = buf[(i << 1) | 0]; else if (buf[(i << 1) | 0].size() == buf[(i << 1) | 1].size()) { buf[i] = buf[(i << 1) | 0]; f.clear(); copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]), back_inserter(f)); buf[i].ntt_doubling(); f.ntt_doubling(); for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j]; } else { buf[i] = buf[(i << 1) | 0]; f.clear(); copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]), back_inserter(f)); buf[i].ntt_doubling(); f.intt(); f.resize(buf[i].size(), mint(0)); f.ntt(); for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j]; } } for (int i = 0; i < 2 * N; i++) { buf[i].intt(); buf[i].shrink(); } } }; template vector InnerMultipointEvaluation(const FormalPowerSeries &f, const vector &xs, const ProductTree &ptree) { using fps = FormalPowerSeries; vector ret; ret.reserve(xs.size()); auto rec = [&](auto self, fps a, int idx) { if (ptree.l[idx] == ptree.r[idx]) return; a %= ptree.buf[idx]; if ((int)a.size() <= 64) { for (int i = ptree.l[idx]; i < ptree.r[idx]; i++) ret.push_back(a.eval(xs[i])); return; } self(self, a, (idx << 1) | 0); self(self, a, (idx << 1) | 1); }; rec(rec, f, 1); return ret; } template vector MultipointEvaluation(const FormalPowerSeries &f, const vector &xs) { if(f.empty() || xs.empty()) return vector(xs.size(), mint(0)); return InnerMultipointEvaluation(f, xs, ProductTree(xs)); } /** * @brief Multipoint Evaluation */ template FormalPowerSeries PolynomialInterpolation(const vector &xs, const vector &ys) { using fps = FormalPowerSeries; assert(xs.size() == ys.size()); ProductTree ptree(xs); fps w = ptree.buf[1].diff(); vector vs = InnerMultipointEvaluation(w, xs, ptree); auto rec = [&](auto self, int idx) -> fps { if (idx >= ptree.N) { if (idx - ptree.N < (int)xs.size()) return {ys[idx - ptree.N] / vs[idx - ptree.N]}; else return {mint(1)}; } if (ptree.buf[idx << 1 | 0].empty()) return {}; else if (ptree.buf[idx << 1 | 1].empty()) return self(self, idx << 1 | 0); return self(self, idx << 1 | 0) * ptree.buf[idx << 1 | 1] + self(self, idx << 1 | 1) * ptree.buf[idx << 1 | 0]; }; return rec(rec, 1); } // template void FormalPowerSeries::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT; } template FormalPowerSeries& FormalPowerSeries::operator*=( const FormalPowerSeries& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries(ret.begin(), ret.end()); } template void FormalPowerSeries::ntt() { set_fft(); static_cast*>(ntt_ptr)->ntt(*this); } template void FormalPowerSeries::intt() { set_fft(); static_cast*>(ntt_ptr)->intt(*this); } template void FormalPowerSeries::ntt_doubling() { set_fft(); static_cast*>(ntt_ptr)->ntt_doubling(*this); } template int FormalPowerSeries::ntt_pr() { set_fft(); return static_cast*>(ntt_ptr)->pr; } template FormalPowerSeries FormalPowerSeries::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries res(deg); res[0] = {mint(1) / (*this)[0]}; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template FormalPowerSeries FormalPowerSeries::exp(int deg) const { using fps = FormalPowerSeries; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min(this->size(), m)); x.resize(m); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{begin(b), begin(b) + deg}; } /** * @brief NTT mod用FPSライブラリ * @docs docs/fps/ntt-friendly-fps.md */ // #include "fps/arbitrary-fps.hpp" // using namespace Nyaan; using mint = LazyMontgomeryModInt<998244353>; // using mint = LazyMontgomeryModInt<1000000007>; using vm = vector; using vvm = vector; Binomial C; using fps = FormalPowerSeries; using namespace Nyaan; // 係数が多項式で表せる vm select(int r, int a, vm ys) { int N = sz(ys); fps xs(N); rep(i, N) xs[i] = i; auto f = PolynomialInterpolation(xs, ys); rep(i, N) xs[i] = a * i + r; return MultipointEvaluation(f, xs); } vm shift(vm ys) { int N = sz(ys); ys.push_back(lagrange_interpolation(ys, N, C)); auto res = mkrui(ys); res.erase(begin(res)); return res; } void q() { inl(N); vl A(N - 1); in(A); bigint M; in(M); vm ys{1}; each(a, A) { auto [q, r] = divmod(M, a); ys = select(r.to_ll(), a, ys); trc(q, r); trc(ys); ys = shift(ys); trc(ys); M = q; } trc(ys, M); out(lagrange_interpolation(ys, (M % 998244353).to_ll(), C)); } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }