class mod_int: """有限体上の整数 有限体上の整数とその演算を扱うクラスです. Attributes: value (int): 整数の値. mod (int): 有限体の法. """ def __init__(self, value, mod): self.value = value % mod self.mod = mod def __neg__(self): return mod_int(-self.value, self.mod) def __add__(self, other): if type(other) is mod_int: return mod_int(self.value + other.value, self.mod) elif type(other) is int: return mod_int(self.value + other, self.mod) raise TypeError() def __sub__(self, other): return self + (-other) def __mul__(self, other): if type(other) is mod_int: return mod_int(self.value * other.value, self.mod) elif type(other) is int: return mod_int(self.value * other, self.mod) raise TypeError() def __truediv__(self, other): if type(other) in [mod_int, int]: return self * other ** (self.mod - 2) raise TypeError() def __pow__(self, other): if type(other) is not int: raise TypeError() cur, ret = self.value, 1 while other > 0: if other % 2: ret = (ret * cur) % self.mod other //= 2 cur = (cur ** 2) % self.mod return mod_int(ret, self.mod) def __repr__(self): return str(self.value) def factorize(a): """素因数分解 素因数分解します. O(√a)で動作します. Args: a (int): 素因数分解したい正整数. Returns: list[int]: 素因数分解の結果. 例えばa=12なら[2, 2, 3]を返します. """ i = 2 ans = [] while i ** 2 <= a: while a % i == 0: ans.append(i) a //= i i += 1 if a > 1: ans.append(a) return ans N, M = map(int, input().split()) mod = 998244353 ans = mod_int(1, mod) d = {} for i in factorize(M): d[i] = d.get(i, 0) + 1 for v in d: ans *= mod_int(d[v] + 1, mod) ** N - mod_int(d[v], mod) ** N print(ans)