#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define allof(obj) (obj).begin(), (obj).end() #define range(i, l, r) for(int i=l;i>1)|y_bit)) #define bit_kth(i, k) ((i >> k)&1) #define bit_highest(i) (i?63-__builtin_clzll(i):-1) #define bit_lowest(i) (i?__builtin_ctzll(i):-1) #define sleepms(t) std::this_thread::sleep_for(std::chrono::milliseconds(t)) using ll = long long; using ld = long double; using ul = uint64_t; using pi = std::pair; using pl = std::pair; using namespace std; template std::ostream &operator<<(std::ostream &dest, const std::pair &p){ dest << p.first << ' ' << p.second; return dest; } template std::ostream &operator<<(std::ostream &dest, const std::vector> &v){ int sz = v.size(); if(sz==0) return dest; for(int i=0;i std::ostream &operator<<(std::ostream &dest, const std::vector &v){ int sz = v.size(); if(sz==0) return dest; for(int i=0;i std::ostream &operator<<(std::ostream &dest, const std::array &v){ if(sz==0) return dest; for(int i=0;i std::ostream &operator<<(std::ostream &dest, const std::set &v){ for(auto itr=v.begin();itr!=v.end();){ dest << *itr; itr++; if(itr!=v.end()) dest << ' '; } return dest; } template std::ostream &operator<<(std::ostream &dest, const std::map &v){ for(auto itr=v.begin();itr!=v.end();){ dest << '(' << itr->first << ", " << itr->second << ')'; itr++; if(itr!=v.end()) dest << '\n'; } return dest; } std::ostream &operator<<(std::ostream &dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char *d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } template vector make_vec(size_t sz, T val){return std::vector(sz, val);} template auto make_vec(size_t sz, Tail ...tail){ return std::vector(tail...))>(sz, make_vec(tail...)); } template vector read_vec(size_t sz){ std::vector v(sz); for(int i=0;i<(int)sz;i++) std::cin >> v[i]; return v; } template auto read_vec(size_t sz, Tail ...tail){ auto v = std::vector(tail...))>(sz); for(int i=0;i<(int)sz;i++) v[i] = read_vec(tail...); return v; } long long max(long long a, int b){return std::max(a, (long long)b);} long long max(int a, long long b){return std::max((long long)a, b);} long long min(long long a, int b){return std::min(a, (long long)b);} long long min(int a, long long b){return std::min((long long)a, b);} long long modulo(long long a, long long m){a %= m; return a < 0 ? a + m : a;} void io_init(){ std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } #include struct point_min_range_min{ template static T id(){ return std::numeric_limits::max(); } template static T update(T a, T b){ return std::min(a, b); } template static T merge(T a, T b){ return std::min(a, b); } }; struct point_min_range_second_min{ template static T id(){ return {std::numeric_limits::max(), std::numeric_limits::max()}; } template static T update(T a, T b){ if(a.first <= b.first) return {a.first, std::min(a.second, b.first)}; else return {b.first, std::min(a.first, b.second)}; } template static T merge(T a, T b){ if(a.first <= b.first) return {a.first, std::min(a.second, b.first)}; else return {b.first, std::min(a.first, b.second)}; } }; struct point_max_range_max{ template static T id(){ return std::numeric_limits::min(); } template static T update(T a, T b){ return std::max(a, b); } template static T merge(T a, T b){ return std::max(a, b); } template static T flip(T a){ return a; } }; struct point_max_range_second_max{ template static T id(){ return {std::numeric_limits::min(), std::numeric_limits::min()}; } template static T update(T a, T b){ if(a.first >= b.first) return {a.first, std::min(a.second, b.first)}; else return {b.first, std::min(a.first, b.second)}; } template static T merge(T a, T b){ if(a.first >= b.first) return {a.first, std::min(a.second, b.first)}; else return {b.first, std::min(a.first, b.second)}; } }; struct point_mul_range_mul{ template static T id(){ return 1; } template static T update(T a, T b){ return a * b; } template static T merge(T a, T b){ return a * b; } }; struct point_add_range_min{ template static T id(){ return std::numeric_limits::max(); } template static T update(T a, T b){ if(a == id()) return b; else if(b == id()) return a; return a + b; } template static T merge(T a, T b){ return std::min(a, b); } }; struct point_add_range_max{ template static T id(){ return std::numeric_limits::min(); } template static T update(T a, T b){ if(a == id()) return b; else if(b == id()) return a; return a + b; } template static T merge(T a, T b){ return std::max(a, b); } }; struct point_add_range_sum{ template static T id(){ return 0; } template static T update(T a, T b){ return a + b; } template static T merge(T a, T b){ return a + b; } template static T flip(T a){ return a; } }; struct point_set_range_composite{ static constexpr int mod = 998244353; template static T id(){ return {1, 0}; } template static T update(T a, T b){ return b; } template static T merge(T a, T b){ int xy = ((long long)a.first * b.first) % mod; int ab = ((long long)a.second * b.first + b.second) % mod; return {xy, ab}; } }; struct excess_value{ int rank, sum, minl, maxr; excess_value(){} excess_value(bool f): rank(f), sum(f ? 1 : -1), minl(sum), maxr(sum){} excess_value(int a, int b, int c, int d): rank(a), sum(b), minl(c), maxr(d){} }; struct point_set_range_excess_value{ const static int inf = std::numeric_limits::max() / 2; template static T id(){ // '('を1, ')'を -1としたときの{1の数, 和, 左を固定したsumのmin, 右を固定したsumのmin} return {inf, 0, 0, 0}; } template static T update(T a, T b){ if(a.rank == inf) return b; if(b.rank == inf) return a; return {a.rank + b.rank, a.sum + b.sum, std::min(a.minl, a.sum + b.minl), std::max(b.maxr, a.maxr + b.sum)}; } template static T merge(T a, T b){ if(a.rank == inf) return b; if(b.rank == inf) return a; return {a.rank + b.rank, a.sum + b.sum, std::min(a.minl, a.sum + b.minl), std::max(b.maxr, a.maxr + b.sum)}; } }; struct point_set_range_composite_flip{ static constexpr int mod = 998244353; template static T id(){ return {1, 0, 0}; } template static T update(T a, T b){ return b; } template static T flip(T a){ return {a[0], a[2], a[1]}; } template static T merge(T a, T b){ int xy = ((long long)a[0] * b[0]) % mod; int ab = ((long long)a[1] * b[0] + b[1]) % mod; int ba = ((long long)b[2] * a[0] + a[2]) % mod; return {xy, ab, ba}; } }; // merge(a, b) = max(0, a + b)の場合, {x, 0}で初期化 struct hawker{ static constexpr long long minf = std::numeric_limits::min() / 2; template static T id(){ return {0, minf}; } template static T update(T a, T b){ return {a.first + b.first, std::max(a.second + b.first, b.second)}; } template static T merge(T a, T b){ return {a.first + b.first, std::max(a.second + b.first, b.second)}; } }; struct point_add_range_gcd{ template static Val __binary_gcd(Val a, Val b){ if(!a || !b) return !a ? b : a; if(a < 0) a *= -1; if(b < 0) b *= -1; int shift = __builtin_ctzll(a | b); // [1] gcd(2a', 2b') = 2 * gcd(a', b') a >>= __builtin_ctzll(a); do{ // if b is odd // gcd(2a', b) = gcd(a', b), if a = 2a'(a is even) // gcd(a, b) = gcd(|a - b|, min(a, b)), if a is odd b >>= __builtin_ctzll(b); // make b odd if(a > b) std::swap(a, b); b -= a; }while(b); // gcd(a, 0) = a return a << shift; // [1] } template static Val id(){ return 0; } template static Val update(Val a, Val b){ return a + b; } template static Val merge(Val a, Val b){ return __binary_gcd(a, b); } }; // 区間set, これまでにsetした物の中ならどれかを取得 struct range_set_get_any{ template static Val id1(){ return nullptr; } template static Lazy id2(){ return nullptr; } template static Lazy propagate(Lazy l, Lazy x){ return (x == nullptr ? l : x); } template static Val apply(Val v, Lazy x, int l, int r){ return (x == nullptr ? v : x); } }; struct range_add_range_sum{ template static T id1(){ return T(0); } template static E id2(){ return E(0); } template static T merge(T a, T b){ return a + b; } template static T apply(T a, E b, int l, int r){ return a + b * (r - l); } template static E propagate(E a, E b){ return a + b; } template static T flip(T a){ return a; } }; struct range_min_range_min{ template static T id1(){ return std::numeric_limits::max(); } template static E id2(){ return std::numeric_limits::max(); } template static T merge(T a, T b){ return std::min(a, b); } template static T apply(T a, E b, int l, int r){ return std::min(a, b); } template static E propagate(E a, E b){ return std::min(a, b); } }; struct range_max_range_max{ template static T id1(){ return std::numeric_limits::min(); } template static E id2(){ return std::numeric_limits::min(); } template static T merge(T a, T b){ return std::max(a, b); } template static T apply(T a, E b, int l, int r){ return std::max(a, b); } template static E propagate(E a, E b){ return std::max(a, b); } }; struct range_set_range_min{ template static T id1(){ return std::numeric_limits::max(); } template static E id2(){ return std::numeric_limits::max(); } template static T merge(T a, T b){ return std::min(a, b); } template static T apply(T a, E b, int l, int r){ return b; } template static E propagate(E a, E b){ return b; } }; struct range_set_range_sum{ template static T id1(){ return 0; } template static E id2(){ return std::numeric_limits::max(); } template static T merge(T a, T b){ return a + b; } template static T apply(T a, E b, int l, int r){ return b * (r - l); } template static E propagate(E a, E b){ return b; } }; struct range_add_range_max{ template static T id1(){ return std::numeric_limits::min(); } template static E id2(){ return 0; } template static T merge(T a, T b){ return std::max(a, b); } template static T apply(T a, E b, int l, int r){ if(a == id1()) return b; return a + b; } template static E propagate(E a, E b){ return a + b; } }; struct range_add_range_min{ template static T id1(){ return std::numeric_limits::max() / 2; } template static E id2(){ return 0; } template static T merge(T a, T b){ return std::min(a, b); } template static T apply(T a, E b, int l, int r){ if(a == id1()) return b; return a + b; } template static E propagate(E a, E b){ return a + b; } }; struct range_add_range_argmin{ template static T id1(){ return {std::numeric_limits::max(), -1} ; } template static E id2(){ return 0; } template static T merge(T a, T b){ return std::min(a, b); } template static T apply(T a, E b, int l, int r){ if(a == id1()) return a; return {a.first + b, a.second}; } template static E propagate(E a, E b){ return a + b; } }; /* #include struct range_affine_range_sum{ const static long long MOD = 998244353; template static T id1(){ return 0; } template static E id2(){ return E{1, 0}; } template static T merge(T a, T b){ return (a + b) % MOD; } template static T apply(T a, E b, int l, int r){ return (a * b[0] + b[1] * (r - l)) % MOD; } template static E propagate(E a, E b){ return E{(a[0] * b[0]) % MOD, (a[1] * b[0] + b[1]) % MOD}; } }; */ struct range_affine_range_sum{ const static int MOD = 998244353; template static T id1(){ return 0; } template static E id2(){ return E{1, 0}; } template static T merge(T a, T b){ return (a + b) % MOD; } template static T apply(T a, E b, int l, int r){ return ((long long)a * b.first + (long long)b.second * (r - l)) % MOD; } template static E propagate(E a, E b){ return E{((long long)a.first * b.first) % MOD, ((long long)a.second * b.first + b.second) % MOD}; } }; struct range_add_range_min_count{ static constexpr int INF = std::numeric_limits::max(); template static T id1(){ return {INF, 0}; } template static E id2(){ return 0; } template static T merge(T a, T b){ if(a.first != b.first) return a.first < b.first ? a : b; return {a.first, a.second + b.second}; } template static T apply(T a, E b, int l, int r){ if(a.first == INF) return {b, r - l}; return {a.first + b, a.second}; } template static E propagate(E a, E b){ return a + b; } }; struct range_composite_lct{ static constexpr int MOD = 998244353; template // 1x + 0, 1x + 0 static T id1(){ return std::array{1, 0, 0}; } // no use template static E id2(){ return false; } // b(a(x)), a(b(x)) template static T merge(T a, T b){ int ba1 = ((long long)b[0] * a[0]) % MOD; int ba2 = ((long long)b[0] * a[1] + b[1]) % MOD; int ab2 = ((long long)a[0] * b[2] + a[2]) % MOD; return std::array{ba1, ba2, ab2}; } // no use template static T apply(T a, E b, int l, int r){ return a; } // no use template static E propagate(E a, E b){ return false; } // template static T flip(T a){ return std::array{a[0], a[2], a[1]}; } }; template struct red_black_tree_monoid{ struct node{ node *l, *r, *p; bool red; int ra, sz; Val val; // 葉 node(Val val): l(nullptr), r(nullptr), p(nullptr), red(false), ra(0), sz(1), val(val){} // 中間ノード node(node *l, node *r, bool red): l(l), r(r), p(nullptr), red(red), ra(l->ra + !(l->red)), sz(l->sz + r->sz){ l->p = r->p = this; val = monoid::template merge(l->val, r->val); } }; static std::vector stock; static node *reuse(node *a, node *l, node *r, bool red){ a->l = l, a->r = r, a->p = nullptr, a->red = red; l->p = r->p = a; a->ra = l->ra + !(l->red); a->sz = l->sz + r->sz; a->val = monoid::template merge(a->l->val, a->r->val); return a; } node *root; using pn = std::pair; static node *merge_sub(node *a, node *b){ if(a->ra < b->ra){ node *c = merge_sub(a, b->l); if(!b->red && c->red && c->l->red){ if(!b->r->red){ return reuse(c, c->l, reuse(b, c->r, b->r, 1), 0); }else{ b->r->red = 0; c->red = 0; return reuse(b, c, b->r, 1); } }else{ return reuse(b, c, b->r, b->red); } }else if(a->ra > b->ra){ node *c = merge_sub(a->r, b); if(!a->red && c->red && c->r->red){ if(!a->l->red){ return reuse(c, reuse(a, a->l, c->l, 1), c->r, 0); }else{ a->l->red = 0; c->red = 0; return reuse(a, a->l, c, 1); } }else{ return reuse(a, a->l, c, a->red); } }else{ if(stock.empty()) return new node(a, b, 1); node *u = stock.back(); stock.pop_back(); return reuse(u, a, b, 1); } } static node *merge(node *a, node *b){ if(!a || !b) return !a ? b : a; node *c = merge_sub(a, b); c->red = 0; return c; } static node *as_root(node *a){ if(!a) return nullptr; a->red = 0; return a; } static pn split(node *a, int k){ int sz = a->sz, szl = (a->l ? a->l->sz : 0); if(k == 0 || k == sz) return (!k ? pn{nullptr, a} : pn{a, nullptr}); pn res; if(k < szl){ auto [l, r] = split(a->l, k); res = pn{l, merge(r, as_root(a->r))}; }else if(k > szl){ auto [l, r] = split(a->r, k - szl); res = pn{merge(as_root(a->l), l), r}; }else{ res = pn{as_root(a->l), as_root(a->r)}; } if(a) stock.push_back(a); return res; } void set(node *a, int k, Val x){ if(!a->l && !a->r){ assert(k == 0); a->val = x; return; } int szl = a->l ? a->l->sz : 0; if(k < szl) set(a->l, k, x); else set(a->r, k - szl, x); a->val = monoid::template merge(a->l->val, a->r->val); } Val get(node *a, int k){ if(!a->l && !a->r){ assert(k == 0); return a->val; } int szl = a->l ? a->l->sz : 0; if(k < szl) return get(a->l, k); else return get(a->r, k - szl); } static Val query(node *a, int l, int r){ if(!a || l >= r || a->sz <= l || r <= 0) return monoid::template id(); if(l <= 0 && a->sz <= r) return a->val; if(!a->l && !a->r) return a->val; int szl = a->l->sz; if(r <= szl) return query(a->l, l, r); if(szl <= l) return query(a->r, l - szl, r - szl); return monoid::template merge(query(a->l, l, szl), query(a->r, 0, r - szl)); } node *build(const std::vector &v, int l, int r){ if(l == r) return nullptr; if(r - l == 1) return new node(v[l]); int mid = (l + r) / 2; node *L = build(v, l, mid); node *R = build(v, mid, r); return merge(L, R); } red_black_tree_monoid(node *a): root(a){} red_black_tree_monoid(): root(nullptr){} red_black_tree_monoid(const std::vector &v): root(build(v, 0, v.size())){} int size()const{ return root ? root->sz : 0; } void set(int k, Val x){ assert(k < size()); set(root, k, x); } Val get(int k){ assert(k < size()); return get(root, k); } // k番目にxを挿入 void insert(int k, Val x){ auto [a, b] = split(root, k); root = merge(a, merge(new node(x), b)); } void erase(int k){ assert(root->sz > k); auto [a, b] = split(root, k); assert(b); auto [b2, c] = split(b, 1); root = merge(a, c); if(b2) stock.push_back(b2); } Val query(int l, int r)const{ assert(0 <= l && r <= size()); return query(root, l, r); } Val query_all(){ return !root ? monoid::template id1() : root->val; } using rbtm = red_black_tree_monoid; std::pair split(int k){ return split(*this, k); } // 2つに分割. 永続でないためこれ自身のaのrootはnullptrになる static std::pair split(rbtm &a, int k){ assert(k <= a.size()); auto [l, r] = split(a.root, k); a.root = nullptr; return {rbtm(l), rbtm(r)}; } // a, bをマージ. 永続でないためa, bのrootはnullptrになる static rbtm merge(rbtm &a, rbtm &b){ rbtm res(merge(a.root, b.root)); a.root = b.root = nullptr; return res; } }; template std::vector::node*> red_black_tree_monoid::stock; template struct lazy_red_black_tree_monoid{ struct node{ node *l, *r, *p; bool red; int ra, sz; Val val; Lazy lazy; // 葉 node(Val val): l(nullptr), r(nullptr), p(nullptr), red(false), ra(0), sz(1), val(val), lazy(monoid::template id2()){} // 中間ノード node(node *l, node *r, bool red): l(l), r(r), p(nullptr), red(red), ra(l->ra + !(l->red)), sz(l->sz + r->sz), lazy(monoid::template id2()){ l->p = r->p = this; val = monoid::template merge(l->val, r->val); } }; static std::vector stock; static node *reuse(node *a, node *l, node *r, bool red){ a->l = l, a->r = r, a->p = nullptr, a->red = red; l->p = r->p = a; a->ra = l->ra + !(l->red); a->sz = l->sz + r->sz; a->val = monoid::template merge(a->l->val, a->r->val); a->lazy = monoid::template id2(); return a; } static void propagate(node *a, Lazy x){ a->val = monoid::template apply(a->val, x, 0, a->sz); a->lazy = monoid::template propagate(a->lazy, x); } static void push_down(node *a){ if(a->lazy == monoid::template id2()) return; if(a->l) propagate(a->l, a->lazy); if(a->r) propagate(a->r, a->lazy); a->lazy = monoid::template id2(); } node *root; using pn = std::pair; static node *merge_sub(node *a, node *b){ if(a->ra < b->ra){ push_down(b); node *c = merge_sub(a, b->l); if(!b->red && c->red && c->l->red){ if(!b->r->red){ return reuse(c, c->l, reuse(b, c->r, b->r, 1), 0); }else{ b->r->red = 0; c->red = 0; return reuse(b, c, b->r, 1); } }else{ return reuse(b, c, b->r, b->red); } }else if(a->ra > b->ra){ push_down(a); node *c = merge_sub(a->r, b); if(!a->red && c->red && c->r->red){ if(!a->l->red){ return reuse(c, reuse(a, a->l, c->l, 1), c->r, 0); }else{ a->l->red = 0; c->red = 0; return reuse(a, a->l, c, 1); } }else{ return reuse(a, a->l, c, a->red); } }else{ if(stock.empty()) return new node(a, b, 1); node *u = stock.back(); stock.pop_back(); return reuse(u, a, b, 1); } } static node *merge(node *a, node *b){ if(!a || !b) return !a ? b : a; node *c = merge_sub(a, b); c->red = 0; return c; } static node *as_root(node *a){ if(!a) return nullptr; a->red = 0; return a; } static pn split(node *a, int k){ int sz = a->sz, szl = (a->l ? a->l->sz : 0); if(k == 0 || k == sz) return (!k ? pn{nullptr, a} : pn{a, nullptr}); pn res; push_down(a); if(k < szl){ auto [l, r] = split(a->l, k); res = pn{l, merge(r, as_root(a->r))}; }else if(k > szl){ auto [l, r] = split(a->r, k - szl); res = pn{merge(as_root(a->l), l), r}; }else{ res = pn{as_root(a->l), as_root(a->r)}; } if(a) stock.push_back(a); return res; } void set(node *a, int k, Val x){ if(!a->l && !a->r){ assert(k == 0); a->val = x; return; } push_down(a); int szl = a->l ? a->l->sz : 0; if(k < szl) set(a->l, k, x); else set(a->r, k - szl, x); a->val = monoid::template merge(a->l->val, a->r->val); } Val get(node *a, int k){ if(!a->l && !a->r){ assert(k == 0); return a->val; } push_down(a); int szl = a->l ? a->l->sz : 0; if(k < szl) return get(a->l, k); else return get(a->r, k - szl); } static void update(node *a, int l, int r, Lazy x){ if(!a || l >= r || a->sz <= l || r <= 0) return; if(l <= 0 && a->sz <= r){ propagate(a, x); return; } if(!a->l && !a->r){ a->val = monoid::template apply(a->val, x, 0, 1); return; } push_down(a); int szl = a->l->sz; update(a->l, l, r, x); update(a->r, l - szl, r - szl, x); a->val = monoid::template merge(a->l->val, a->r->val); } static Val query(node *a, int l, int r){ if(!a || l >= r || a->sz <= l || r <= 0) return monoid::template id1(); if(l <= 0 && a->sz <= r) return a->val; if(!a->l && !a->r) return a->val; push_down(a); int szl = a->l->sz; if(r <= szl) return query(a->l, l, r); if(szl <= l) return query(a->r, l - szl, r - szl); return monoid::template merge(query(a->l, l, szl), query(a->r, 0, r - szl)); } node *build(const std::vector &v, int l, int r){ if(l == r) return nullptr; if(r - l == 1) return new node(v[l]); int mid = (l + r) / 2; node *L = build(v, l, mid); node *R = build(v, mid, r); return merge(L, R); } lazy_red_black_tree_monoid(node *a): root(a){} lazy_red_black_tree_monoid(): root(nullptr){} lazy_red_black_tree_monoid(const std::vector &v): root(build(v, 0, v.size())){} int size()const{ return root ? root->sz : 0; } void set(int k, Val x){ assert(k < size()); set(root, k, x); } Val get(int k){ assert(k < size()); return get(root, k); } // k番目にxを挿入 void insert(int k, Val x){ auto [a, b] = split(root, k); root = merge(a, merge(new node(x), b)); } void erase(int k){ assert(root->sz > k); auto [a, b] = split(root, k); assert(b); auto [b2, c] = split(b, 1); root = merge(a, c); if(b2) stock.push_back(b2); } void update(int l, int r, Lazy x){ assert(0 <= l && r <= size()); return update(root, l, r, x); } Val query(int l, int r)const{ assert(0 <= l && r <= size()); return query(root, l, r); } void update_all(Lazy x){ if(root) propagate(root, x); } Val query_all(){ return !root ? monoid::template id1() : root->val; } using rbtm = lazy_red_black_tree_monoid; std::pair split(int k){ return split(*this, k); } // 2つに分割. 永続でないためこれ自身のaのrootはnullptrになる static std::pair split(rbtm &a, int k){ assert(k <= a.size()); auto [l, r] = split(a.root, k); a.root = nullptr; return {rbtm(l), rbtm(r)}; } rbtm merge(rbtm &b){ rbtm res = merge(*this, b); root = b.root = nullptr; return res; } // a, bをマージ. 永続でないためa, bのrootはnullptrになる static rbtm merge(rbtm &a, rbtm &b){ rbtm res(merge(a.root, b.root)); a.root = b.root = nullptr; return res; } }; template std::vector::node*> lazy_red_black_tree_monoid::stock; template struct union_find_monoid{ private: using rbt = red_black_tree_monoid; using node = typename rbt::node; std::vector V; std::unordered_map rev; node *__find(int a){ node *v = V[a]; while(v->p) v = v->p; return v; } public: union_find_monoid(int n): V(n){ for(int i = 0; i < n; i++){ V[i] = new node(monoid::template id()); rev.emplace(V[i], i); } } union_find_monoid(const std::vector &val): V(val.size()){ for(int i = 0; i < val.size(); i++){ V[i] = new node(val[i]); rev.emplace(V[i], i); } } void unite(int a, int b){ node *u = __find(a); node *v = __find(b); if(u == v) return; rbt::merge(u, v); } // 通常のunion-find木ではunite(a, b)後の根はaの根, bの根のうちサイズがあ大きい方であるが, このfindはそのルールを守らない // 同じ木の状態で同じ連結成分の要素から呼ばれると同じ値[0, n)を返すことのみ保証される int find(int a){ node *v = V[a]; while(v->p) v = v->p; while(v->l) v = v->l; return rev[v]; } bool same(int a, int b){ return __find(a) == __find(b); } int size(int a){ return __find(a)->sz; } Val query(int a){ return __find(a)->val; } Val get(int a){ return V[a]->val; } void set(int a, Val x){ node *v = V[a]; v->val = x; while(v->p){ v = v->p; v->val = monoid::template merge(v->l->val, v->r->val); } } std::vector enumerate(int a){ std::vector res; node *v = V[a]; while(v->p) v = v->p; std::queue q; q.push(v); while(!q.empty()){ v = q.front(); q.pop(); if(v->l){ q.push(v->l); q.push(v->r); }else{ res.push_back(rev[v]); } } return res; } }; template struct lazy_union_find_monoid{ private: using rbt = lazy_red_black_tree_monoid; using node = typename rbt::node; std::vector V; std::unordered_map rev; node *__find(int a){ node *v = V[a]; while(v->p) v = v->p; return v; } public: lazy_union_find_monoid(int n): V(n){ for(int i = 0; i < n; i++){ V[i] = new node(monoid::template id1()); rev.emplace(V[i], i); } } lazy_union_find_monoid(const std::vector &val): V(val.size()){ for(int i = 0; i < val.size(); i++){ V[i] = new node(val[i]); rev.emplace(V[i], i); } } void unite(int a, int b){ node *u = __find(a); node *v = __find(b); if(u == v) return; rbt::merge(u, v); } // 通常のunion-find木ではunite(a, b)後の根はaの根, bの根のうちサイズがあ大きい方であるが, このfindはそのルールを守らない // 同じ木の状態で同じ連結成分の要素から呼ばれると同じ値[0, n)を返すことのみ保証される int find(int a){ node *v = V[a]; while(v->p) v = v->p; while(v->l) v = v->l; return rev[v]; } bool same(int a, int b){ return __find(a) == __find(b); } int size(int a){ return __find(a)->sz; } void update(int a, Lazy x){ node *v = __find(a); rbt::propagate(v, x); } Val query(int a){ return __find(a)->val; } Val get(int a){ std::vector path; node *v = V[a]; while(v->p){ v = v->p; path.push_back(v); } int m = path.size(); for(int i = m - 1; i >= 0; i--) rbt::push_down(path[i]); return V[a]->val; } void set(int a, Val x){ std::vector path; node *v = V[a]; while(v->p){ v = v->p; path.push_back(v); } int m = path.size(); for(int i = m - 1; i >= 0; i--) rbt::push_down(path[i]); V[a]->val = x; for(int i = 0; i < m; i++) path[i]->val = monoid::template merge(path[i]->l->val, path[i]->r->val); } std::vector enumerate(int a){ std::vector res; node *v = V[a]; while(v->p) v = v->p; std::queue q; q.push(v); while(!q.empty()){ v = q.front(); q.pop(); if(v->l){ q.push(v->l); q.push(v->r); }else{ res.push_back(rev[v]); } } return res; } }; #include #include // @param m `1 <= m` constexpr long long safe_mod(long long x, long long m){ x %= m; if (x < 0) x += m; return x; } struct barrett{ unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1){} unsigned int umod()const{return _m;} unsigned int mul(unsigned int a, unsigned int b)const{ unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z) * im) >> 64); #endif unsigned long long y = x * _m; return (unsigned int)(z - y + (z < y ? _m : 0)); } }; // @param n `0 <= n` // @param m `1 <= m` constexpr long long pow_mod_constexpr(long long x, long long n, int m){ if(m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while(n){ if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for(long long a : bases){ long long t = d; long long y = pow_mod_constexpr(a, t, n); while(t != n - 1 && y != 1 && y != n - 1){ y = y * y % n; t <<= 1; } if(y != n - 1 && t % 2 == 0){ return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); constexpr int primitive_root_constexpr(int m){ if(m == 2) return 1; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for(int i = 3; (long long)(i)*i <= x; i += 2){ if(x % i == 0){ divs[cnt++] = i; while(x % i == 0){ x /= i; } } } if(x > 1) divs[cnt++] = x; for(int g = 2;; g++){ bool ok = true; for(int i = 0; i < cnt; i++){ if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1){ ok = false; break; } } if(ok)return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); int ceil_pow2(int n){ int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } int bsf(unsigned int n){ return __builtin_ctz(n); } // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b){ a = safe_mod(a, b); if(a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t){ long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) m0 += b / s; return {s, m0}; } template long long modpow(long long a, long long b){ assert(0 <= b); assert(0 < m); a = safe_mod(a, m); long long ret = 1; while(b){ if(b & 1) ret = (ret * a) % m; a = (a * a) % m; b >>= 1; } return ret; } // @param 0 <= b, 0 < m long long modpow(long long a, long long b, int m){ assert(0 <= b); assert(0 < m); a = safe_mod(a, m); long long ret = 1; while(b){ if(b & 1) ret = (ret * a) % m; a = (a * a) % m; b >>= 1; } return ret; } struct modint_base {}; struct static_modint_base : modint_base {}; template * = nullptr> struct static_modint : static_modint_base{ using mint = static_modint; public: static constexpr int mod(){return m;} static mint raw(int v) { mint x; x._v = v; return x; } static_modint(): _v(0){} template static_modint(T v){ long long x = v % (long long)umod(); if (x < 0) x += umod(); _v = x; } unsigned int val()const{return _v;} mint& operator++(){ _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--(){ if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int){ mint result = *this; ++*this; return result; } mint operator--(int){ mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs){ _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs){ _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs){ unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();} mint operator+()const{return *this;} mint operator-()const{return mint() - *this;} mint pow(long long n)const{ assert(0 <= n); mint x = *this, r = 1; while(n){ if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv()const{ if(prime){ assert(_v); return pow(umod() - 2); }else{ auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;} friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;} friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;} friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;} friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;} friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;} private: unsigned int _v; static constexpr unsigned int umod(){return m;} static constexpr bool prime = is_prime; }; template struct dynamic_modint : modint_base{ using mint = dynamic_modint; public: static int mod(){return (int)(bt.umod());} static void set_mod(int m){ assert(1 <= m); bt = barrett(m); } static mint raw(int v){ mint x; x._v = v; return x; } dynamic_modint(): _v(0){} template dynamic_modint(T v){ long long x = v % (long long)(mod()); if (x < 0) x += mod(); _v = x; } unsigned int val()const{return _v;} mint& operator++(){ _v++; if(_v == umod()) _v = 0; return *this; } mint& operator--(){ if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int){ mint result = *this; ++*this; return result; } mint operator--(int){ mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs){ _v += rhs._v; if(_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs){ _v += mod() - rhs._v; if(_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs){ _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();} mint operator+()const{return *this;} mint operator-()const{return mint() - *this;} mint pow(long long n)const{ assert(0 <= n); mint x = *this, r = 1; while(n){ if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv()const{ auto eg = inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;} friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;} friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;} friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;} friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;} friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;} private: unsigned int _v; static barrett bt; static unsigned int umod(){return bt.umod();} }; template barrett dynamic_modint::bt(998244353); using modint = dynamic_modint<-1>; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; template std::ostream &operator<<(std::ostream &dest, const static_modint &a){ dest << a.val(); return dest; } template std::ostream &operator<<(std::ostream &dest, const dynamic_modint &a){ dest << a.val(); return dest; } // 0 <= n < m <= int_max // 前処理 O(n + log(m)) // 各種計算 O(1) // 変数 <= n template* = nullptr> struct modcomb{ private: int n; std::vector f, i, fi; void init(int _n){ assert(0 <= _n && _n < mint::mod()); if(_n < f.size()) return; n = _n; f.resize(n + 1), i.resize(n + 1), fi.resize(n + 1); f[0] = fi[0] = mint(1); if(n) f[1] = fi[1] = i[1] = mint(1); for(int j = 2; j <= n; j++) f[j] = f[j - 1] * j; fi[n] = f[n].inv(); for(int j = n; j >= 2; j--){ fi[j - 1] = fi[j] * j; i[j] = f[j - 1] * fi[j]; } } public: modcomb(): n(-1){} modcomb(int _n){ init(_n); } void recalc(int _n){ init(std::min(mint::mod() - 1, 1 << ceil_pow2(_n))); } mint comb(int a, int b){ if((a < 0) || (b < 0) || (a < b)) return 0; return f[a] * fi[a - b] * fi[b]; } mint combinv(int a, int b){ assert(0 <= b && b <= a); return fi[a] * f[a - b] * f[b]; } mint perm(int a, int b){ if((a < 0) || (b < 0) || (a < b)) return 0; return f[a] * fi[a - b]; } mint perminv(int a, int b){ assert(0 <= b && b <= a); return fi[a] * f[a - b]; } mint fac(int x){ assert(0 <= x && x <= n); return f[x]; } mint inv(int x){ assert(0 < x && x <= n); return i[x]; } mint finv(int x){ assert(0 <= x && x <= n); return fi[x]; } }; template* = nullptr> struct modpow_table{ std::vector v; // x^maxkまで計算できる modpow_table(){} void init(int x, int maxk){ v.resize(maxk + 1); v[0] = 1; for(int i = 1; i <= maxk; i++) v[i] = v[i - 1] * x; } mint pow(int k){ assert(0 <= k && k < v.size()); return v[k]; } }; using mint = modint998244353; int main(){ io_init(); int n, m; std::cin >> n >> m; vector> g(n); range(i, 0, m){ int a, b; std::cin >> a >> b; a--, b--; if(a < b) swap(a, b); g[a].push_back(b); } vector tmp(n, 1); lazy_union_find_monoid uf(tmp); mint ans = 0; range(i, 0, n){ mint s = 0; sort(allof(g[i])); //reverse(allof(g[i])); for(int t : g[i]){ if(!uf.same(i, t)) s += uf.get(t); uf.unite(i, t); } ans += s + 1; uf.update(i, s + 1); uf.set(i, s + 1); } std::cout << ans << '\n'; }