def EnumeratePrimes(n): if n <= 1: return [] A = [1, 7, 11, 13, 17, 19, 23, 29] thres = (n + 29) // 30 sieve = [255] * (thres + int(n**0.5) + 10) def ntoi(i): return (i >> 2) + (not (~i & 19)) sieve[0] ^= 1 i = 0 flg = 1 while flg: if sieve[i] != 0: for j in range(8): if sieve[i] >> j & 1: p = i * 30 + A[j] if p * p > n: flg = 0 continue q = [0] * 8 r = [0] * 8 s = 0 for k in range(8): x = p * (i * 30 + A[k]) q[k] = x // 30 r[k] = ntoi(x - 30 * q[k]) while q[0] + s < thres: sieve[q[0] + s] &= ~(1 << r[0]) sieve[q[1] + s] &= ~(1 << r[1]) sieve[q[2] + s] &= ~(1 << r[2]) sieve[q[3] + s] &= ~(1 << r[3]) sieve[q[4] + s] &= ~(1 << r[4]) sieve[q[5] + s] &= ~(1 << r[5]) sieve[q[6] + s] &= ~(1 << r[6]) sieve[q[7] + s] &= ~(1 << r[7]) s += p i += 1 primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] for i in range(1, thres): for j in range(8): if sieve[i] >> j & 1: primes.append(i * 30 + A[j]) while primes[-1] > n: primes.pop() return primes P = EnumeratePrimes(65) for _ in range(int(input())): k = int(input()) if k == 1: print(1) continue k -= 1 l = 1 r = 10**18 while r - l > 1: cnt = 0 m = (l + r) // 2 for p in P: c = int(m ** (1 / p)) while pow(c, p) <= m: c += 1 while pow(c, p) > m: c -= 1 cnt += c - 1 if cnt >= k: break if cnt >= k: r = m else: l = m print(r)