#include #pragma GCC optimize("unroll-loops") using namespace std; using std::cout; using std::cin; using std::endl; using ll=long long; using ld=long double; const ll ILL=2167167167167167167; const int INF=2100000000; const int mod=998244353; #define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++) #define all(p) p.begin(),p.end() template using _pq = priority_queue, greater>; template ll LB(vector &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();} template ll UB(vector &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();} template bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;} template bool chmax(T &a,const T &b){if(a void So(vector &v) {sort(v.begin(),v.end());} template void Sore(vector &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});} void yneos(bool a,bool upp=0){if(a) cout<<(upp?"YES\n":"Yes\n"); else cout<<(upp?"NO\n":"No\n");} template void vec_out(vector &p,int ty=0){ if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'< T vec_min(vector &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;} template T vec_max(vector &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;} template T vec_sum(vector &a){assert(!a.empty());T ans=a[0]-a[0];for(auto &x:a) ans+=x;return ans;} int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;} namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal namespace internal { template * = nullptr> void butterfly(std::vector& a) { static constexpr int g = internal::primitive_root; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } template * = nullptr> void butterfly_inv(std::vector& a) { static constexpr int g = internal::primitive_root; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } } } // namespace internal template * = nullptr> std::vector convolution(std::vector a, std::vector b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template ::value>* = nullptr> std::vector convolution(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint; std::vector a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector convolution_ll(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution(a, b); auto c2 = convolution(a, b); auto c3 = convolution(a, b); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder using namespace atcoder; const int DIGIT = 6; const int BASE = 1000000; struct positive_bigint{ std::vector d; positive_bigint(){ } positive_bigint(long long X){ while (X > 0){ d.push_back(X % BASE); X /= BASE; } } positive_bigint(std::string S){ if (S == "0"){ S = ""; } int L = S.size(); d.resize((L + DIGIT - 1) / DIGIT, 0); for (int i = L - 1; i >= 0; i -= 6){ for (int j = std::max(i - 5, 0); j <= i; j++){ d[i / DIGIT] *= 10; d[i / DIGIT] += S[j] - '0'; } } std::reverse(d.begin(), d.end()); } bool empty() const { return d.empty(); } int size() const { return d.size(); } int& operator [](int i){ return d[i]; } int operator [](int i) const { return d[i]; } }; std::string to_string(const positive_bigint &A){ int N = A.size(); std::string ans; for (int i = N - 1; i >= 0; i--){ std::string tmp = std::to_string(A[i]); if (i < N - 1){ ans += std::string(DIGIT - tmp.size(), '0'); } ans += tmp; } if (ans.empty()){ ans = "0"; } return ans; } std::istream& operator >>(std::istream &is, positive_bigint &A){ std::string S; is >> S; A = positive_bigint(S); return is; } std::ostream& operator <<(std::ostream &os, positive_bigint &A){ os << to_string(A); return os; } int cmp(const positive_bigint &A, const positive_bigint &B){ int N = A.size(); int M = B.size(); if (N < M){ return -1; } else if (N > M){ return 1; } else { for (int i = N - 1; i >= 0; i--){ if (A[i] < B[i]){ return -1; } if (A[i] > B[i]){ return 1; } } return 0; } } bool operator ==(const positive_bigint &A, const positive_bigint &B){ return cmp(A, B) == 0; } bool operator !=(const positive_bigint &A, const positive_bigint &B){ return cmp(A, B) != 0; } bool operator <(const positive_bigint &A, const positive_bigint &B){ return cmp(A, B) < 0; } bool operator >(const positive_bigint &A, const positive_bigint &B){ return cmp(A, B) > 0; } bool operator <=(const positive_bigint &A, const positive_bigint &B){ return cmp(A, B) <= 0; } bool operator >=(const positive_bigint &A, const positive_bigint &B){ return cmp(A, B) >= 0; } positive_bigint& operator +=(positive_bigint &A, const positive_bigint &B){ int N = A.size(); int M = B.size(); while (N < M){ A.d.push_back(0); N++; } for (int i = 0; i < M; i++){ A[i] += B[i]; } for (int i = 0; i < N - 1; i++){ if (A[i] >= BASE){ A[i] -= BASE; A[i + 1]++; } else if(i >= M) break; } if (N > 0){ if (A[N - 1] >= BASE){ A.d.push_back(1); A[N - 1] -= BASE; } } return A; } positive_bigint operator +(const positive_bigint &A, const positive_bigint &B){ positive_bigint A2 = A; A2 += B; return A2; } positive_bigint& operator -=(positive_bigint &A, const positive_bigint &B){ int N = A.size(); int M = B.size(); for (int i = 0; i < M; i++){ A[i] -= B[i]; } for (int i = 0; i < N - 1; i++){ if (A[i] < 0){ A[i] += BASE; A[i + 1]--; } } while (!A.empty()){ if (A.d.back() == 0){ A.d.pop_back(); } else { break; } } return A; } positive_bigint operator -(const positive_bigint &A, const positive_bigint &B){ positive_bigint A2 = A; A2 -= B; return A2; } positive_bigint operator *(const positive_bigint &A, const positive_bigint &B){ if (A.empty() || B.empty()){ return 0; } int N = A.size(); int M = B.size(); std::vector a(N); for (int i= 0; i < N; i++){ a[i] = A[i]; } std::vector b(M); for (int i = 0; i < M; i++){ b[i] = B[i]; } std::vector C = atcoder::convolution_ll(a, b); for (int i = 0; i < N + M - 2; i++){ C[i + 1] += C[i] / BASE; C[i] %= BASE; } if (C[N + M - 2] >= BASE){ C.resize(N + M); C[N + M - 1] += C[N + M - 2] / BASE; C[N + M - 2] %= BASE; } positive_bigint ans; ans.d.resize(C.size()); for (int i = 0; i < (int) C.size(); i++){ ans[i] = C[i]; } return ans; } positive_bigint operator *=(positive_bigint &A, const positive_bigint &B){ A = A * B; return A; } struct bigint{ bool neg = false; positive_bigint a; bigint(){ } bigint(long long X): neg(X < 0), a(abs(X)){ } bigint(const positive_bigint &X, bool neg = false): neg(neg), a(X){ } bigint(const std::string &s){ if (!s.empty()){ if (s[0] == '-'){ neg = true; a = positive_bigint(s.substr(1, s.size() - 1)); } else { a = positive_bigint(s); } } } bool empty() const { return a.empty(); } int size() const { return a.size(); } int& operator [](int i){ return a[i]; } }; std::string to_string(const bigint &A){ std::string ans; if (A.neg){ ans += '-'; } ans += to_string(A.a); return ans; } std::istream& operator >>(std::istream &is, bigint &A){ std::string S; is >> S; if (S != "0"){ A = bigint(S); } return is; } std::ostream& operator <<(std::ostream &os, bigint A){ os << to_string(A); return os; } positive_bigint abs(const bigint &A){ return A.a; } int cmp(const bigint &A, const bigint &B){ if (!A.neg){ if (!B.neg){ return cmp(A.a, B.a); } else { return 1; } } else { if (!B.neg){ return -1; } else { return cmp(B.a, A.a); } } } bool operator ==(const bigint &A, const bigint &B){ return cmp(A, B) == 0; } bool operator !=(const bigint &A, const bigint &B){ return cmp(A, B) != 0; } bool operator <(const bigint &A, const bigint &B){ return cmp(A, B) < 0; } bool operator >(const bigint &A, const bigint &B){ return cmp(A, B) > 0; } bool operator <=(const bigint &A, const bigint &B){ return cmp(A, B) <= 0; } bool operator >=(const bigint &A, const bigint &B){ return cmp(A, B) >= 0; } bigint operator +(const bigint &A){ return A; } bigint operator -(const bigint &A){ bigint A2 = A; if (!A2.empty()){ A2.neg = !A2.neg; } return A2; } bigint& operator +=(bigint &A, const bigint &B){ if (A.neg == B.neg){ A.a += B.a; } else { int c = cmp(A.a, B.a); if (c > 0){ A.a -= B.a; } else if (c < 0){ A.a = B.a - A.a; A.neg = !A.neg; } else { A = 0; } } return A; } bigint operator +(const bigint &A, const bigint &B){ bigint A2 = A; A2 += B; return A2; } bigint& operator -=(bigint &A, const bigint &B){ if (A.neg != B.neg){ A.a += B.a; } else { int c = cmp(A.a, B.a); if (c > 0){ A.a -= B.a; } else if (c < 0){ A.a = B.a - A.a; A.neg = !A.neg; } else { A = 0; } } return A; } bigint operator -(const bigint &A, const bigint &B){ bigint A2 = A; A2 -= B; return A2; } bigint operator *=(bigint &A, const bigint &B){ if (A.empty() || B.empty()){ A = 0; } else { if (B.neg){ A.neg = !A.neg; } A.a *= B.a; } return A; } bigint operator *(const bigint &A, const bigint &B){ bigint A2 = A; A2 *= B; return A2; } void solve(); // oddloop int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t=1; //cin>>t; rep(i,0,t) solve(); } void solve(){ int N; string S; cin>>N>>S; // A*X+B struct F{ bigint A; bigint B; bigint X; }; vector mem(N); int mem_ind=0; auto fix_F=[&](F &a) -> bigint { return a.X*a.A+a.B; }; auto size_F=[&](F &a) -> int { return (int)max(a.A.size()+a.X.size(),a.B.size()); }; auto che_F=[&](F &a) -> void { if(size_F(a)!=(int)(a.X.size())){ a.X=fix_F(a); a.A=1; a.B=0; } }; auto ins = [&] (bigint n) -> int { mem[mem_ind]={1,0,n}; return mem_ind++; }; auto mul_F=[&](F &a,F &b) -> void { if(size_F(a) void { if(size_F(a) p) -> int { while((int)p.size()!=1){ vector n_p; rep(i,0,p.size()){ if(i&1) continue; if(i+1==(int)(p.size())) n_p.push_back(p[i]); else{ n_p.push_back(p[i]); add_F(mem[p[i]],mem[p[i+1]]); mem[p[i+1]]={0,0,0}; } } swap(n_p,p); } return p[0]; }; auto mul_all=[&](vector p) -> int { while((int)p.size()!=1){ vector n_p; rep(i,0,p.size()){ if(i&1) continue; if(i+1==(int)p.size()) n_p.push_back(p[i]); else{ n_p.push_back(p[i]); mul_F(mem[p[i]],mem[p[i+1]]); mem[p[i+1]]={0,0,0}; } } swap(n_p,p); } return p[0]; }; auto f=[&](auto self) -> int { stack st; st.push(ADD); while(l> G(1); int ind=0; bool ok=1; while(!st.empty()){ int tmp=st.top(); st.pop(); if(tmp==MUL) ok=1; else if(tmp==ADD){ // nop } else if(tmp==DEL){ mem[G[ind].back()].A.neg^=true; mem[G[ind].back()].B.neg^=true; } else{ if(!ok){ ind++; G.push_back({}); } ok=0; G[ind].push_back(tmp); } } vector q; for(auto x:G) q.push_back(mul_all(x)); return add_all(q); }; int ans=f(f); cout<