using System; using static System.Console; using System.Linq; using System.Collections.Generic; class Program { static int NN => int.Parse(ReadLine()); static int[] NList => ReadLine().Split().Select(int.Parse).ToArray(); public static void Main() { Solve(); } static void Solve() { var n = NN; var b = NList; var ncr = new NCR(n - 1, 2); var dp0 = 1L; var dp1 = 0L; var mod = 998_244_353; for (var i = 0; i < b.Length; ++i) { var ev = NcrIsEven(n - 1, i); var ndp0 = 0L; var ndp1 = 0L; if (b[i] != 1) { ndp0 = (ndp0 + dp0) % mod; ndp1 = (ndp1 + dp1) % mod; } if (b[i] != 0) { if (ev) { ndp0 = (ndp0 + dp0) % mod; ndp1 = (ndp1 + dp1) % mod; } else { ndp0 = (ndp0 + dp1) % mod; ndp1 = (ndp1 + dp0) % mod; } } dp0 = ndp0; dp1 = ndp1; } WriteLine(dp1); } static bool NcrIsEven(int n, int r) { return DCount(n) - DCount(r) - DCount(n - r) > 0; } static int DCount(int n) { var ans = 0; for (var i = 2; i <= n; i <<= 1) { ans += n / i; } return ans; } class NCR { int[] facts; int[] revFacts; int mod; public NCR(int n, int mod) { facts = new int[n + 1]; revFacts = new int[n + 1]; this.mod = mod; facts[0] = 1; var tmp = 1L; for (var i = 1; i <= n; ++i) { tmp = tmp * i % mod; facts[i] = (int)tmp; } tmp = Exp(facts[n], mod - 2); revFacts[n] = (int)tmp; for (var i = n; i > 1; --i) { tmp = tmp * i % mod; revFacts[i - 1] = (int)tmp; } revFacts[0] = 1; } public long Exp(long n, long k) { n = n % mod; if (k == 0) return 1; if (k == 1) return n; var half = Exp(n, k / 2); var result = half * half % mod; return ((k % 2) == 0) ? result : (result * n % mod); } public long Calc(int n, int r) { return (long)facts[n] * revFacts[r] % mod * revFacts[n - r] % mod; } /// nが大きくrが小さい場合の計算 public long Calc2(int n, int r) { var tmp = 1L; for (var i = 0; i < r; ++i) { tmp = tmp * (n - i) % mod; } return tmp * revFacts[r] % mod; } public long NPR(int n, int r) { return (long)facts[n] * revFacts[r] % mod; } public long Fact(int n) { return facts[n]; } public long RevFact(int n) { return revFacts[n]; } public long Inverse(int n) { return (long)revFacts[n] * facts[n - 1] % mod; } } }