#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN inline void Solve() { CIN( int , N ); vector> HTI( N + 1 ); FOREQ( i , 1 , N ){ CIN( ll , Hi ); HTI[i] = { Hi , 0 , i }; } FOREQ( i , 1 , N ){ CIN( ll , Ti ); get<1>( HTI[i] ) = Ti; } sort( HTI.begin() + 1 , HTI.end() ); HTI[0] = { 0 , 0 , 0 }; vector f_prep( N + 1 ); f_prep[0] = 0; FOREQ( i , 1 , N ){ int& Ti = get<1>( HTI[i] ); BS2( j , 0 , N , get<0>( HTI[j] ) , Ti ); f_prep[i] = j; } IdempotentMonoidBIT f{ Max , 0 , move( f_prep ) }; FOREQ( i , 1 , N ){ get<0>( HTI[get<2>( HTI[i] )] ) = i; } auto f_max = [&]( const int& i = 0 ){ return max( i , f.IntervalSum( 0 , i ) ); }; // Doubling d{ move( f_max ) , N + 1 }; // MemorisationDoubling d{ f_max , N + 1 }; EnumerationDoubling d{ Id , Id , f_max , N + 1 }; CIN( ll , Q ); REPEAT( Q ){ CIN_ASSERT( Aq , 1 , N ); CIN_ASSERT( Bq , 1 , N ); int& iq = get<0>( HTI[Aq] ); int& jq = get<0>( HTI[Bq] ); const int& fiq = f[iq]; CERR( iq , jq , fiq ); if( fiq >= jq ){ CERR( "accessible at once:" , fiq , ">=" , jq ); COUT( 1 ); } else { if( d.IteratedComposition( fiq , N ) < jq ){ CERR( "inaccessible:" , d.IteratedComposition( fiq , N ) , "<" , jq ); COUT( -1 ); } else { BS1( n , 0 , N , d.IteratedComposition( fiq , n ) , jq ); CERR( "accessible:" , d.IteratedComposition( fiq , n ) , ">=" , jq ); COUT( ++n ); } } } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // グラフ用 template Map gF; template inline T GetgF( const T& t ){ return gF[t]; } template vector gA; template inline T GetgA( const int& i ){ return gA[i]; } template vector > gE; template list GetgE( const int& i ) { // list answer{}; list answer = gE[i]; // VVV 入力によらない処理は以下に挿入する。 // AAA 入力によらない処理は以上に挿入する。 return answer; } // COMPAREに使用。圧縮時は削除する。 ll Naive( int N , int M , int K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 inline void Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 inline void SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // // COMPARE( N ); // } } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* C-x 3 C-x o C-x C-fによるファイル操作用 BFS: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt CoordinateCompress: c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp Divisor: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt Polynomial c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt UnionFind c:/Users/user/Documents/Programming/Utility/VLTree/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 // 2^16 = 65536 // 2^17 = 131072 // 2^18 = 262144 // 2^60 = 1152921504606846976 > 10^18 // 2^63 = 9223372036854775808 < 10^19 // FはT->U(-->T)に相当する型 template class DoublingBody { protected: F m_f; int m_size; int m_digit; vector > m_doubling; inline DoublingBody( F f , const int& size , const int& digit ); public: // f^n(t)を計算する。 template T IteratedComposition( T t , INT n ); private: virtual T e( const int& i ) = 0; virtual int e_inv( const T& t ) = 0; }; // size未満の非負整数全体の集合をSと置く。要件 // (1) Sの任意の要素iに対しf(i)はSの要素である。 // が成り立つ場合にのみサポート。 // Sの各要素tとn < 2^digitを満たす各非負整数nをわたるf^n(t)全体を // 合計O(size log n)の計算量で求める。 template class Doubling : public DoublingBody { public: inline Doubling( F f , const int& size , const int& digit = 64 ); private: inline int e( const int& i ); inline int e_inv( const int& t ); }; // 要素数sizeのある集合Sが要件 // (1) Sの任意の要素iに対しf(i)はSの要素である。 // (2) fはデフォルト引数による呼び出し可能(推論補助に用いる) // を満たす場合にのみサポート。 // そのようなSの各要素tとn < 2^digitを満たす各非負整数nをわたるf^n(t)全体を // 合計O(size log size log n)の計算量で求める。 template class MemorisationDoubling : public DoublingBody { private: int m_length; Map m_memory; vector m_memory_inv; public: inline MemorisationDoubling( F f , const int& size , const int& digit = 64 ); private: inline T e( const int& i ); inline int e_inv( const T& t ); }; template MemorisationDoubling(F,Args...) -> MemorisationDoubling()()),F>; // 要素数sizeのある集合Sが要件 // (1) Sの任意の要素iに対しf(i)はSの要素である。 // (2) fはデフォルト引数による呼び出し可能(推論補助に用いる) // (3) (enum_T,enum_T_inv)がSとsize未満の非負整数全体の集合の間の全単射を与える。 // を満たす場合にのみサポート。 // そのようなSの各要素tとn < 2^digitを満たす各非負整数nをわたるf^n(t)全体を // 合計O(size log n)の計算量で求める。 template class EnumerationDoubling : public DoublingBody { private: Enum_T m_enum_T; Enum_T_inv m_enum_T_inv; public: inline EnumerationDoubling( Enum_T enum_T , Enum_T_inv enum_T_inv , F f , const int& size , const int& digit = 64 ); private: inline T e( const int& i ); inline int e_inv( const T& t ); }; template EnumerationDoubling(Enum_T,Enum_T_inv,F,Args...) -> EnumerationDoubling()()),Enum_T,Enum_T_inv,F>; template inline DoublingBody::DoublingBody( F f , const int& size , const int& digit ) : m_f( move( f ) ) , m_size( size ) , m_digit( digit ) , m_doubling( m_digit , vector( m_size , -1 ) ) { static_assert( is_invocable_r_v ); } template inline Doubling::Doubling( F f , const int& size , const int& digit ) : DoublingBody( move( f ) , size , digit ) {} template inline MemorisationDoubling::MemorisationDoubling( F f , const int& size , const int& digit ) : DoublingBody( move( f ) , size , digit ) , m_length() , m_memory() , m_memory_inv() {} template inline EnumerationDoubling::EnumerationDoubling( Enum_T enum_T , Enum_T_inv enum_T_inv , F f , const int& size , const int& digit) : DoublingBody( move( f ) , size , digit ) , m_enum_T( move( enum_T ) ) , m_enum_T_inv( move( enum_T_inv ) ) {} template template T DoublingBody::IteratedComposition( T t , INT n ) { int i = e_inv( t ); int d = 0; while( n != 0 ){ assert( d < m_digit ); auto& doubling_d = m_doubling[d]; const int& doubling_d_i = doubling_d[i]; if( doubling_d_i == -1 ){ int j = i; if( d == 0 ){ while( doubling_d[j] == -1 ){ j = doubling_d[j] = e_inv( t = m_f( t ) ); } } else { auto& doubling_d_minus = m_doubling[d - 1]; while( doubling_d[j] == -1 ){ j = doubling_d[j] = doubling_d_minus[doubling_d_minus[j]]; } } } ( n & 1 ) == 1 ? i = doubling_d_i : i; n >>= 1; d++; } return e( i ); } template inline int Doubling::e( const int& i ) { return i; } template inline T MemorisationDoubling::e( const int& i ) { assert( i < m_length ); return m_memory_inv[i]; } template inline T EnumerationDoubling::e( const int& i ) { using base = DoublingBody; assert( i < base::m_size ); return m_enum_T( i ); } template inline int Doubling::e_inv( const int& t ) { return t; } template inline int MemorisationDoubling::e_inv( const T& t ) { if( m_memory.count( t ) == 0 ){ using base = DoublingBody; assert( m_length < base::m_size ); m_memory_inv.push_back( t ); return m_memory[t] = m_length++; } return m_memory[t]; } template inline int EnumerationDoubling::e_inv( const T& t ) { return m_enum_T_inv( t ); } // M_Tは乗算m_T:T^2->Tに相当する型。 // 入力の範囲内で要件 // - (T,m_T:T^2->T,e_T:1->T)が可換羃等モノイドである。 // を満たす場合にのみサポート。 // 単位元による初期化O(size) // 配列による初期化O(size) // 一点取得O(1) // LSB切片和取得O(1)(left:a[j-(j&-j)]+...+a[j-1]、right:a[j-1]+...+a[j+(j&-j)-1]) // 区間和取得O(log_2 size) // 一点更新O((log_2 size)^2) // 一点加算O(log_2 size)(可換性と羃等性を用いる) // 区間加算O(i_final-i_start+log_2 size)(可換性と羃等性を用いる) // tを吸収する(tに吸収される)要素の添字の最小値の二分探索O(log_2 size) // (存在しない場合はsize以上の最小の2羃×2-1を返すので、size以上であることで判定可能) // そのうちの区間和取得と一点更新は // M. Dima, R. Ceterchi, Efficient Range Minimum Queries using Binary Indexed Trees, Olympiads in Informatics, 2015, Vol. 9, 39--44 // の手法を一般の可換羃等モノイドに拡張することで実装 template class IdempotentMonoidBIT { private: M_T m_m_T; T m_e_T; int m_size; vector m_a; vector m_fenwick_0; vector m_fenwick_1; int m_power; public: inline IdempotentMonoidBIT( M_T m_T , T e_T , const int& size = 0 ); inline IdempotentMonoidBIT( M_T m_T , T e_T , vector a ); inline IdempotentMonoidBIT& operator=( IdempotentMonoidBIT&& a ); inline const T& operator[]( const int& i ) const; inline const T& Get( const int& i ) const; inline const T& LSBSegmentSum( const int& j , const bool& left = true ) const; T IntervalSum( const int& i_start , const int& i_final ) const; void Set( const int& i , const T& n ); inline void Set( vector&& a ); inline void Initialise( const int& size = 0 ); void Add( const int& i , const T& n ); void IntervalAdd( const int& i_start , const int& i_final , const T& n ); int BinarySearch( const T& t ) const; }; template inline IdempotentMonoidBIT::IdempotentMonoidBIT( M_T m_T , T e_T , const int& size ) : m_m_T( move( m_T ) ) , m_e_T( move( e_T ) ) , m_size( size ) , m_a( m_size , m_e_T ) , m_fenwick_0( m_size + 1 , m_e_T ) , m_fenwick_1( m_size + 1 , m_e_T ) , m_power( 1 ) { static_assert( is_invocable_r_v ); while( m_power < m_size ){ m_power <<= 1; } } template inline IdempotentMonoidBIT::IdempotentMonoidBIT( M_T m_T , T e_T , vector a ) : m_m_T( move( m_T ) ) , m_e_T( move( e_T ) ) , m_size( a.size() ) , m_a( move( a ) ) , m_fenwick_0( m_size + 1 ) , m_fenwick_1( m_size + 1 ) , m_power( 1 ) { static_assert( is_invocable_r_v ); for( int i = 0 ; i < m_size ; i++ ){ int j = i + 1; T& fenwick_0i = m_fenwick_0[j]; fenwick_0i = m_a[i]; const int j_llim = j - ( j & -j ); j--; while( j > j_llim ){ fenwick_0i = m_m_T( m_fenwick_0[j] , fenwick_0i ); j -= ( j & -j ); } } for( int i = m_size - 1 ; i >= 0 ; i-- ){ int j = i + 1; T& fenwick_1i = m_fenwick_1[j]; fenwick_1i = m_a[i]; const int j_ulim = min( j + ( j & -j ) , m_size + 1 ); j++; while( j < j_ulim ){ fenwick_1i = m_m_T( fenwick_1i , m_fenwick_1[j] ); j += ( j & -j ); } } while( m_power < m_size ){ m_power <<= 1; } } template inline IdempotentMonoidBIT& IdempotentMonoidBIT::operator=( IdempotentMonoidBIT&& a ) { m_m_T = move( a.m_m_T ); m_e_T = move( a.m_e_T ); m_size = move( a.m_size ); m_a = move( a.m_a ); m_fenwick_0 = move( a.m_fenwick_0 ); m_fenwick_1 = move( a.m_fenwick_1 ); m_power = a.m_power; } template inline const T& IdempotentMonoidBIT::operator[]( const int& i ) const { assert( i < m_size ); return m_a[i]; } template inline const T& IdempotentMonoidBIT::Get( const int& i ) const { return operator[]( i ); } template inline const T& IdempotentMonoidBIT::LSBSegmentSum( const int& j , const bool& left ) const { assert( 0 < j && j <= m_size ); return ( left ? m_fenwick_0 : m_fenwick_1 )[j]; } template T IdempotentMonoidBIT::IntervalSum( const int& i_start , const int& i_final ) const { const int j_min = max( i_start + 1 , 1 ); const int j_max = min( i_final + 1 , m_size ); if( j_min > j_max ){ return m_e_T; } T answer1 = m_e_T; int j = j_min; int j_next = j + ( j & -j ); while( j_next <= j_max ){ answer1 = m_m_T( answer1 , m_fenwick_1[j] ); j = j_next; j_next += ( j & -j ); } answer1 = m_m_T( answer1 , m_a[j-1] ); T answer0 = m_e_T; j = j_max; j_next = j - ( j & -j ); while( j_next >= j_min ){ answer0 = m_m_T( m_fenwick_0[j] , answer0 ); j = j_next; j_next -= ( j & -j ); } return m_m_T( answer1 , answer0 ); } template void IdempotentMonoidBIT::Set( const int& i , const T& n ) { T& ai = m_a[i]; if( n == m_m_T( ai , n ) ){ Add( i , n ); } else { int j = i + 1; while( j <= m_size ){ const int lsb = ( j & -j ); m_fenwick_0[j] = m_m_T( m_m_T( IntervalSum( j - lsb , i - 1 ) , n ) , IntervalSum( i + 1 , j - 1 ) ); j += lsb; } j = i + 1; while( j > 0 ){ const int lsb = ( j & -j ); m_fenwick_0[j] = m_m_T( m_m_T( IntervalSum( j - 1 , i - 1 ) , n ) , IntervalSum( i + 1 , j + lsb - 2 ) ); j -= lsb; } ai = n; } return; } template inline void IdempotentMonoidBIT::Set( vector&& a ) { *this = IdempotentMonoidBIT( move( m_m_T ) , move( m_e_T ) , move( a ) ); } template inline void IdempotentMonoidBIT::Initialise( const int& size ) { *this = IdempotentMonoidBIT( move( m_m_T ) , move( m_e_T ) , m_size ); } template void IdempotentMonoidBIT::Add( const int& i , const T& n ) { T& ai = m_a[i]; ai = m_m_T( ai , n ); int j = i + 1; while( j <= m_size ){ T& tj = m_fenwick_0[j]; tj = m_m_T( tj , n ); j += ( j & -j ); } j = i + 1; while( j > 0 ){ T& tj = m_fenwick_1[j]; tj = m_m_T( tj , n ); j -= ( j & -j ); } return; } template void IdempotentMonoidBIT::IntervalAdd( const int& i_start , const int& i_final , const T& n ) { const int j_min = max( i_start + 1 , 1 ); const int j_max = min( i_final + 1 , m_size ); for( int i = j_min - 1 ; i < j_max ; i++ ){ T& ai = m_a[i]; ai = m_m_T( ai , n ); } const int j_llim = j_min - ( j_min & -j_min ); const int j_ulim = min( j_max + ( j_max & j_max ) , m_size + 1 ); if( j_min <= j_max ){ int j = j_min; while( j < j_ulim ){ if( j - ( j & -j ) < j_max ){ T& tj = m_fenwick_0[j]; tj = m_m_T( tj , n ); } j++; } j = j_max; while( j > j_llim ){ if( j + ( j & -j ) > j_min ){ T& tj = m_fenwick_0[j]; tj = m_m_T( tj , n ); } j--; } } return; } template inline int IdempotentMonoidBIT::BinarySearch( const T& t ) const { int j = 0; int power = m_power; T sum = m_e_T; T sum_next = m_e_T; while( power > 0 ){ int j_next = j | power; if( j_next < m_size ){ sum_next = m_m_T( sum_next , m_fenwick_0[j_next] ); if( sum_next != m_m_T( sum_next , t ) ){ sum = sum_next; j = j_next; } else { sum_next = sum; } } power >>= 1; } // InitialSegmentSum( i )がt未満となるiが存在するならばjはその最大値に1を足したものとなり、 // InitialSegmentSum( i )がt未満となるiが存在しないならばj=0となり、 // いずれの場合もjはInitialSegmentSum( i )がt以上となる最小のiと等しい。 return j; } // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode || exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){ SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); } #define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; } #define CIN_A( LL , A , N ) vector A( N ); SET_A( A , N ); #endif #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; template using T2 = pair; template using T3 = tuple; template using T4 = tuple; using path = pair; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define TYPE_OF( VAR ) decay_t #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ return; } // 入出力用 template inline basic_istream& VariadicCin( basic_istream& is ) { return is; } template inline basic_istream& VariadicCin( basic_istream& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator ) { return is; } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); } template inline basic_ostream& operator<<( basic_ostream& os , const vector& arg ) { auto begin = arg.begin() , end = arg.end(); auto itr = begin; while( itr != end ){ ( itr == begin ? os : os << " " ) << *itr; itr++; } return os; } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg& arg ) { return os << arg; } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); } // 算術用 template constexpr T PositiveBaseResidue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } template constexpr T Residue( const T& a , const T& p ){ return PositiveBaseResidue( a , p < 0 ? -p : p ); } template constexpr T PositiveBaseQuotient( const T& a , const T& p ){ return ( a - PositiveBaseResidue( a , p ) ) / p; } template constexpr T Quotient( const T& a , const T& p ){ return p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ static_assert( ! is_same::value && ! is_same::value ); \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ ll ANSWER[CONSTEXPR_LENGTH]; \ ll ANSWER_INV[CONSTEXPR_LENGTH]; \ ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CONST_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ const ll CONST_TARGET_BS = ( CONST_TARGET ); \ ll DIFFERENCE_BS; \ while( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CONST_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "-" , #CONST_TARGET , "=" , EXPRESSION_BS , "-" , CONST_TARGET_BS , "=" , DIFFERENCE_BS ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CONST_TARGET_BS ? ">" : EXPRESSION_BS < CONST_TARGET_BS ? "<" : "=" ) , CONST_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CONST_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CONST_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \ // 単調増加の時にEXPRESSION <= CONST_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \ // 単調減少の時にEXPRESSION >= CONST_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \ // 単調減少の時にEXPRESSION <= CONST_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \ // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 template inline typename set::iterator MaximumLeq( set& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 template inline typename set::iterator MaximumLt( set& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 template inline typename set::iterator MinimumGeq( set& S , const T& t ) { return S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 template inline typename set::iterator MinimumGt( set& S , const T& t ) { return S.upper_bound( t ); } // データ構造用 template typename V> inline V operator+( const V& a0 , const V& a1 ) { if( a0.empty() ){ return a1; } if( a1.empty() ){ return a0; } assert( a0.size() == a1.size() ); V answer{}; for( auto itr0 = a0.begin() , itr1 = a1.begin() , end0 = a0.end(); itr0 != end0 ; itr0++ , itr1++ ){ answer.push_back( *itr0 + *itr1 ); } return answer; } template inline pair operator+( const pair& t0 , const pair& t1 ) { return { t0.first + t1.first , t0.second + t1.second }; } template inline tuple operator+( const tuple& t0 , const tuple& t1 ) { return { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) }; } template inline tuple operator+( const tuple& t0 , const tuple& t1 ) { return { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) , get<3>( t0 ) + get<3>( t1 ) }; } template inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; } template inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; } template inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; } template inline const T& Zero() { static const T z{}; return z; } template inline const T& One() { static const T o = 1; return o; }\ template inline T AddInv( const T& t ) { return -t; } template inline T Id( const T& v ) { return v; } template inline T Min( const T& a , const T& b ){ return a < b ? a : b; } template inline T Max( const T& a , const T& b ){ return a < b ? b : a; } // グリッド問題用 int H , W , H_minus , W_minus , HW; vector > non_wall; inline T2 EnumHW( const int& v ) { return { v / W , v % W }; } inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; } const string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return ik?0:jh?3:(assert(false),-1);} // v->wの方向番号を取得 inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;} inline void SetEdgeOnGrid( const string& Si , const int& i , list ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+10){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1 ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+10){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1 >& non_wall , const char& walkable = '.' , const char& unwalkable = '#' ){non_wall.push_back(vector(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}} // デバッグ用 #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void AutoCheck( int& exec_mode , const bool& use_getline ); inline void Solve(); inline void Experiment(); inline void SmallTest(); inline void RandomTest(); ll GetRand( const ll& Rand_min , const ll& Rand_max ); int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , sample_debug_mode , 1 ); CEXPR( int , submission_debug_mode , 2 ); CEXPR( int , library_search_mode , 3 ); CEXPR( int , experiment_mode , 4 ); CEXPR( int , small_test_mode , 5 ); CEXPR( int , random_test_mode , 6 ); #ifdef USE_GETLINE CEXPR( bool , use_getline , true ); #else CEXPR( bool , use_getline , false ); #endif #else ll GetRand( const ll& Rand_min , const ll& Rand_max ) { ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } #endif // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& // VVV 常設ライブラリは以下に挿入する。 // Map // c:/Users/user/Documents/Programming/Mathematics/Function/Map CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Map = conditional_t>,unordered_map,conditional_t,map,void>>; // ConstexprModulo // c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/a.hpp CEXPR(uint,P,998244353);TE CE INT& RS(INT& n)NE{RE n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n %= M;}TE CE uint& RS(uint& n)NE{RE n %= M;}TE CE ull& RS(ull& n)NE{RE n %= M;}TE CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;}TE <> CE ull& RS(ull& n)NE{CE CO ull Pull = P;CE CO ull Pull2 =(Pull - 1)*(Pull - 1);RE RSP(n > Pull2?n -= Pull2:n);}TE CE INT RS(INT&& n)NE{RE MO(RS(n));}TE CE INT RS(CO INT& n)NE{RE RS(INT(n));} #define SFINAE_FOR_MOD(DEFAULT)TY T,enable_if_t >::value>* DEFAULT #define DC_OF_CM_FOR_MOD(FUNC)CE bool OP FUNC(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(FUNC)CE Mod OP FUNC(CO Mod& n)CO NE;TE CE Mod OP FUNC(T&& n)CO NE; #define DF_OF_CM_FOR_MOD(FUNC)TE CE bool Mod::OP FUNC(CO Mod& n)CO NE{RE m_n FUNC n.m_n;} #define DF_OF_AR_FOR_MOD(FUNC,FORMULA)TE CE Mod Mod::OP FUNC(CO Mod& n)CO NE{RE MO(Mod(*TH)FUNC ## = n);}TE TE CE Mod Mod::OP FUNC(T&& n)CO NE{RE FORMULA;}TE CE Mod OP FUNC(T&& n0,CO Mod& n1)NE{RE MO(Mod(forward(n0))FUNC ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(CO T& n)NE;TE CE Mod(T& n)NE;TE CE Mod(T&& n)NE;CE Mod& OP=(CO Mod& n)NE;CE Mod& OP=(Mod&& n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(CO Mod& n);CE Mod& OP<<=(int n)NE;CE Mod& OP>>=(int n)NE;CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+);DC_OF_AR_FOR_MOD(-);DC_OF_AR_FOR_MOD(*);DC_OF_AR_FOR_MOD(/);CE Mod OP<<(int n)CO NE;CE Mod OP>>(int n)CO NE;CE Mod OP-()CO NE;CE Mod& SignInvert()NE;CE Mod& Double()NE;CE Mod& Halve()NE;IN Mod& Invert();TE CE Mod& PositivePW(T&& EX)NE;TE CE Mod& NonNegativePW(T&& EX)NE;TE CE Mod& PW(T&& EX);CE VO swap(Mod& n)NE;CE CRUI RP()CO NE;ST CE Mod DeRP(CRUI n)NE;ST CE uint& Normalise(uint& n)NE;ST IN CO Mod& Inverse(CRUI n)NE;ST IN CO Mod& Factorial(CRUI n)NE;ST IN CO Mod& FactorialInverse(CRUI n)NE;ST IN Mod Combination(CRUI n,CRUI i)NE;ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;TE CE Mod& Ref(T&& n)NE;}; #define SFINAE_FOR_MN(DEFAULT)TY T,enable_if_t,decay_t >::value>* DEFAULT #define DC_OF_AR_FOR_MN(FUNC)IN MN OP FUNC(CO MN& n)CO NE;TE IN MN OP FUNC(T&& n)CO NE; #define DF_OF_CM_FOR_MN(FUNC)TE IN bool MN::OP FUNC(CO MN& n)CO NE{RE m_n FUNC n.m_n;} #define DF_OF_AR_FOR_MN(FUNC,FORMULA)TE IN MN MN::OP FUNC(CO MN& n)CO NE{RE MO(MN(*TH)FUNC ## = n);}TE TE IN MN MN::OP FUNC(T&& n)CO NE{RE FORMULA;}TE IN MN OP FUNC(T&& n0,CO MN& n1)NE{RE MO(MN(forward(n0))FUNC ## = n1);} TE CL MN:PU Mod{PU:CE MN()NE;CE MN(CO MN& n)NE;CE MN(MN& n)NE;CE MN(MN&& n)NE;TE CE MN(CO T& n)NE;TE CE MN(T&& n)NE;CE MN& OP=(CO MN& n)NE;CE MN& OP=(MN&& n)NE;CE MN& OP+=(CO MN& n)NE;CE MN& OP-=(CO MN& n)NE;CE MN& OP*=(CO MN& n)NE;IN MN& OP/=(CO MN& n);CE MN& OP<<=(int n)NE;CE MN& OP>>=(int n)NE;CE MN& OP++()NE;CE MN OP++(int)NE;CE MN& OP--()NE;CE MN OP--(int)NE;DC_OF_AR_FOR_MN(+);DC_OF_AR_FOR_MN(-);DC_OF_AR_FOR_MN(*);DC_OF_AR_FOR_MN(/);CE MN OP<<(int n)CO NE;CE MN OP>>(int n)CO NE;CE MN OP-()CO NE;CE MN& SignInvert()NE;CE MN& Double()NE;CE MN& Halve()NE;CE MN& Invert();TE CE MN& PositivePW(T&& EX)NE;TE CE MN& NonNegativePW(T&& EX)NE;TE CE MN& PW(T&& EX);CE uint RP()CO NE;CE Mod Reduce()CO NE;ST CE MN DeRP(CRUI n)NE;ST IN CO MN& Formise(CRUI n)NE;ST IN CO MN& Inverse(CRUI n)NE;ST IN CO MN& Factorial(CRUI n)NE;ST IN CO MN& FactorialInverse(CRUI n)NE;ST IN MN Combination(CRUI n,CRUI i)NE;ST IN CO MN& zero()NE;ST IN CO MN& one()NE;ST CE uint Form(CRUI n)NE;ST CE ull& Reduction(ull& n)NE;ST CE ull& ReducedMU(ull& n,CRUI m)NE;ST CE uint MU(CRUI n0,CRUI n1)NE;ST CE uint BaseSquareTruncation(uint& n)NE;TE CE MN& Ref(T&& n)NE;};TE CE MN Twice(CO MN& n)NE;TE CE MN Half(CO MN& n)NE;TE CE MN Inverse(CO MN& n);TE CE MN PW(MN n,T EX);TE CE MN<2> PW(CO MN<2>& n,CO T& p);TE CE T Square(CO T& t);TE <> CE MN<2> Square >(CO MN<2>& t);TE CE VO swap(MN& n0,MN& n1)NE;TE IN string to_string(CO MN& n)NE;TE IN basic_istream& OP>>(basic_istream& is,MN& n);TE IN basic_ostream& OP<<(basic_ostream& os,CO MN& n); TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO bool g_even =((M & 1)== 0);ST CE CO uint g_memory_bound = 1000000;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE ull MNBasePW(ull&& EX)NE;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uint g_M_minus_2_neg = 2 - M;ST CE CO int g_MN_digit = 32;ST CE CO ull g_MN_base = ull(1)<< g_MN_digit;ST CE CO uint g_MN_base_minus = uint(g_MN_base - 1);ST CE CO uint g_MN_digit_half =(g_MN_digit + 1)>> 1;ST CE CO uint g_MN_base_sqrt_minus =(1 << g_MN_digit_half)- 1;ST CE CO uint g_MN_M_neg_inverse = uint((g_MN_base - MNBasePW((ull(1)<<(g_MN_digit - 1))- 1))& g_MN_base_minus);ST CE CO uint g_MN_base_mod = uint(g_MN_base % M);ST CE CO uint g_MN_base_square_mod = uint(((g_MN_base % M)*(g_MN_base % M))% M);};TE CE ull COantsForMod::MNBasePW(ull&& EX)NE{ull prod = 1;ull PW = M;WH(EX != 0){(EX & 1)== 1?(prod *= PW)&= g_MN_base_minus:prod;EX >>= 1;(PW *= PW)&= g_MN_base_minus;}RE prod;} US MP = Mod

;US MNP = MN

;TE CE uint MN::Form(CRUI n)NE{ull n_copy = n;RE uint(MO(Reduction(n_copy *= COantsForMod::g_MN_base_square_mod)));}TE CE ull& MN::Reduction(ull& n)NE{ull n_sub = n & COantsForMod::g_MN_base_minus;RE((n +=((n_sub *= COantsForMod::g_MN_M_neg_inverse)&= COantsForMod::g_MN_base_minus)*= M)>>= COantsForMod::g_MN_digit)< M?n:n -= M;}TE CE ull& MN::ReducedMU(ull& n,CRUI m)NE{RE Reduction(n *= m);}TE CE uint MN::MU(CRUI n0,CRUI n1)NE{ull n0_copy = n0;RE uint(MO(ReducedMU(ReducedMU(n0_copy,n1),COantsForMod::g_MN_base_square_mod)));}TE CE uint MN::BaseSquareTruncation(uint& n)NE{CO uint n_u = n >> COantsForMod::g_MN_digit_half;n &= COantsForMod::g_MN_base_sqrt_minus;RE n_u;}TE CE MN::MN()NE:Mod(){static_assert(! COantsForMod::g_even);}TE CE MN::MN(CO MN& n)NE:Mod(n){}TE CE MN::MN(MN& n)NE:Mod(n){}TE CE MN::MN(MN&& n)NE:Mod(MO(n)){}TE TE CE MN::MN(CO T& n)NE:Mod(n){static_assert(! COantsForMod::g_even);Mod::m_n = Form(Mod::m_n);}TE TE CE MN::MN(T&& n)NE:Mod(forward(n)){static_assert(! COantsForMod::g_even);Mod::m_n = Form(Mod::m_n);}TE CE MN& MN::OP=(CO MN& n)NE{RE Ref(Mod::OP=(n));}TE CE MN& MN::OP=(MN&& n)NE{RE Ref(Mod::OP=(MO(n)));}TE CE MN& MN::OP+=(CO MN& n)NE{RE Ref(Mod::OP+=(n));}TE CE MN& MN::OP-=(CO MN& n)NE{RE Ref(Mod::OP-=(n));}TE CE MN& MN::OP*=(CO MN& n)NE{ull m_n_copy = Mod::m_n;RE Ref(Mod::m_n = MO(ReducedMU(m_n_copy,n.m_n)));}TE IN MN& MN::OP/=(CO MN& n){RE OP*=(MN(n).Invert());}TE CE MN& MN::OP<<=(int n)NE{RE Ref(Mod::OP<<=(n));}TE CE MN& MN::OP>>=(int n)NE{RE Ref(Mod::OP>>=(n));}TE CE MN& MN::OP++()NE{RE Ref(Mod::Normalise(Mod::m_n += COantsForMod::g_MN_base_mod));}TE CE MN MN::OP++(int)NE{MN n{*TH};OP++();RE n;}TE CE MN& MN::OP--()NE{RE Ref(Mod::m_n < COantsForMod::g_MN_base_mod?((Mod::m_n += M)-= COantsForMod::g_MN_base_mod):Mod::m_n -= COantsForMod::g_MN_base_mod);}TE CE MN MN::OP--(int)NE{MN n{*TH};OP--();RE n;}DF_OF_AR_FOR_MN(+,MN(forward(n))+= *TH);DF_OF_AR_FOR_MN(-,MN(forward(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MN(*,MN(forward(n))*= *TH);DF_OF_AR_FOR_MN(/,MN(forward(n)).Invert()*= *TH);TE CE MN MN::OP<<(int n)CO NE{RE MO(MN(*TH)<<= n);}TE CE MN MN::OP>>(int n)CO NE{RE MO(MN(*TH)>>= n);}TE CE MN MN::OP-()CO NE{RE MO(MN(*TH).SignInvert());}TE CE MN& MN::SignInvert()NE{RE Ref(Mod::m_n > 0?Mod::m_n = M - Mod::m_n:Mod::m_n);}TE CE MN& MN::Double()NE{RE Ref(Mod::Double());}TE CE MN& MN::Halve()NE{RE Ref(Mod::Halve());}TE CE MN& MN::Invert(){assert(Mod::m_n > 0);RE PositivePW(uint(COantsForMod::g_M_minus_2));}TE TE CE MN& MN::PositivePW(T&& EX)NE{MN PW{*TH};(--EX)%= COantsForMod::g_M_minus_2;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE MN& MN::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(Mod::m_n = COantsForMod::g_MN_base_mod):PositivePW(forward(EX));}TE TE CE MN& MN::PW(T&& EX){bool neg = EX < 0;assert(!(neg && Mod::m_n == 0));RE neg?PositivePW(forward(EX *= COantsForMod::g_M_minus_2_neg)):NonNegativePW(forward(EX));}TE CE uint MN::RP()CO NE{ull m_n_copy = Mod::m_n;RE MO(Reduction(m_n_copy));}TE CE Mod MN::Reduce()CO NE{ull m_n_copy = Mod::m_n;RE Mod::DeRP(MO(Reduction(m_n_copy)));}TE CE MN MN::DeRP(CRUI n)NE{RE MN(Mod::DeRP(n));}TE IN CO MN& MN::Formise(CRUI n)NE{ST MN memory[COantsForMod::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = DeRP(LE_curr);LE_curr++;}RE memory[n];}TE IN CO MN& MN::Inverse(CRUI n)NE{ST MN memory[COantsForMod::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN(Mod::Inverse(LE_curr));LE_curr++;}RE memory[n];}TE IN CO MN& MN::Factorial(CRUI n)NE{ST MN memory[COantsForMod::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN val_curr{one()};ST MN val_last{one()};WH(LE_curr <= n){memory[LE_curr++] = val_curr *= ++val_last;}RE memory[n];}TE IN CO MN& MN::FactorialInverse(CRUI n)NE{ST MN memory[COantsForMod::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN val_curr{one()};ST MN val_last{one()};WH(LE_curr <= n){memory[LE_curr] = val_curr *= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE IN MN MN::Combination(CRUI n,CRUI i)NE{RE i <= n?Factorial(n)*FactorialInverse(i)*FactorialInverse(n - i):zero();}TE IN CO MN& MN::zero()NE{ST CE CO MN z{};RE z;}TE IN CO MN& MN::one()NE{ST CE CO MN o{DeRP(1)};RE o;}TE TE CE MN& MN::Ref(T&& n)NE{RE *TH;}TE CE MN Twice(CO MN& n)NE{RE MO(MN(n).Double());}TE CE MN Half(CO MN& n)NE{RE MO(MN(n).Halve());}TE CE MN Inverse(CO MN& n){RE MO(MN(n).Invert());}TE CE MN PW(MN n,T EX){RE MO(n.PW(EX));}TE CE VO swap(MN& n0,MN& n1)NE{n0.swap(n1);}TE IN string to_string(CO MN& n)NE{RE to_string(n.RP())+ " + MZ";}TE IN basic_istream& OP>>(basic_istream& is,MN& n){ll m;is >> m;n = m;RE is;}TE IN basic_ostream& OP<<(basic_ostream& os,CO MN& n){RE os << n.RP();} TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(CO T& n)NE:m_n(RS(n)){}TE TE CE Mod::Mod(T& n)NE:m_n(RS(decay_t(n))){}TE TE CE Mod::Mod(T&& n)NE:m_n(RS(forward(n))){}TE CE Mod& Mod::OP=(CO Mod& n)NE{RE Ref(m_n = n.m_n);}TE CE Mod& Mod::OP=(Mod&& n)NE{RE Ref(m_n = MO(n.m_n));}TE CE Mod& Mod::OP+=(CO Mod& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE CE Mod& Mod::OP-=(CO Mod& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE CE Mod& Mod::OP*=(CO Mod& n)NE{RE Ref(m_n = COantsForMod::g_even?RS(ull(m_n)* n.m_n):MN::MU(m_n,n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE IN Mod& Mod::OP/=(CO Mod& n){RE OP*=(Mod(n).Invert());}TE CE Mod& Mod::OP<<=(int n)NE{WH(n-- > 0){Normalise(m_n <<= 1);}RE *TH;}TE CE Mod& Mod::OP>>=(int n)NE{WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE Mod& Mod::OP++()NE{RE Ref(m_n < COantsForMod::g_M_minus?++m_n:m_n = 0);}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod::g_M_minus:--m_n);}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,Mod(forward(n))+= *TH);DF_OF_AR_FOR_MOD(-,Mod(forward(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MOD(*,Mod(forward(n))*= *TH);DF_OF_AR_FOR_MOD(/,Mod(forward(n)).Invert()*= *TH);TE CE Mod Mod::OP<<(int n)CO NE{RE MO(Mod(*TH)<<= n);}TE CE Mod Mod::OP>>(int n)CO NE{RE MO(Mod(*TH)>>= n);}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE CE Mod& Mod::Double()NE{RE Ref(Normalise(m_n <<= 1));}TE CE Mod& Mod::Halve()NE{RE Ref(((m_n & 1)== 0?m_n:m_n += M)>>= 1);}TE IN Mod& Mod::Invert(){assert(m_n > 0);uint m_n_neg;RE m_n < COantsForMod::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M - m_n)< COantsForMod::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod::g_M_minus_2));}TE <> IN Mod<2>& Mod<2>::Invert(){assert(m_n > 0);RE *TH;}TE TE CE Mod& Mod::PositivePW(T&& EX)NE{Mod PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <> TE CE Mod<2>& Mod<2>::PositivePW(T&& EX)NE{RE *TH;}TE TE CE Mod& Mod::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(forward(EX)));}TE TE CE Mod& Mod::PW(T&& EX){bool neg = EX < 0;assert(!(neg && Mod::m_n == 0));RE neg?PositivePW(forward(EX *= COantsForMod::g_M_minus_2_neg)):NonNegativePW(forward(EX));}TE IN CO Mod& Mod::Inverse(CRUI n)NE{ST Mod memory[COantsForMod::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - MN::MU(memory[M % LE_curr].m_n,M / LE_curr);LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CRUI n)NE{ST Mod memory[COantsForMod::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN::Factorial(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CRUI n)NE{ST Mod memory[COantsForMod::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN::FactorialInverse(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CRUI n,CRUI i)NE{RE MN::Combination(n,i).Reduce();}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE CE CRUI Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(CRUI n)NE{Mod n_copy{};n_copy.m_n = n;RE n_copy;}TE CE uint& Mod::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{DeRP(1)};RE o;}TE TE CE Mod& Mod::Ref(T&& n)NE{RE *TH;}TE CE Mod Twice(CO Mod& n)NE{RE MO(Mod(n).Double());}TE CE Mod Half(CO Mod& n)NE{RE MO(Mod(n).Halve());}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod Inverse_COrexpr(CRUI n)NE{RE MO(Mod::DeRP(RS(n)).NonNegativePW(M - 2));}TE CE Mod PW(Mod n,T EX){RE MO(n.PW(EX));}TE CE Mod<2> PW(Mod<2> n,const T& p){RE p == 0?Mod<2>::one():move(n);}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + MZ";}TE IN basic_istream& OP>>(basic_istream& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN basic_ostream& OP<<(basic_ostream& os,CO Mod& n){RE os << n.RP();} // IntervalAddBIT // c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/a.hpp TE CL BIT{PU:int m_SZ;VE m_fenwick;int m_PW;IN BIT(CRI SZ = 0);BIT(CO VE& a);IN BIT& OP=(BIT&& a);IN T Get(CRI i)CO;IN VO Set(CRI i,CO T& n);IN VO Set(CO VE& a);IN VO Initialise(CRI SZ = 0);IN BIT& OP+=(CO VE& a);VO Add(CRI i,CO T& n);IN CO T& LSBSegmentSum(CRI j)CO;T InitialSegmentSum(CRI i_final)CO;IN T IntervalSum(CRI i_start,CRI i_final)CO;int BinarySearch(CO T& n)CO;IN int BinarySearch(CRI i_start,CO T& n)CO;}; TE IN BIT::BIT(CRI SZ):m_SZ(SZ),m_fenwick(m_SZ+1),m_PW(1){static_assert(! is_same::value);WH(m_PW < m_SZ){m_PW <<= 1;}}TE BIT::BIT(CO VE& a):BIT(a.SZ()){for(int j = 1;j <= m_SZ;j++){T& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];int i_lim = j -(j & -j);WH(i > i_lim){fenwick_j += m_fenwick[i];i -=(i & -i);}}}TE IN BIT& BIT::OP=(BIT&& a){m_SZ = a.m_SZ;m_fenwick = MO(a.m_fenwick);m_PW = a.m_PW;RE *TH;}TE IN T BIT::Get(CRI i)CO{RE IntervalSum(i,i);}TE IN VO BIT::Set(CRI i,CO T& n){Add(i,n - IntervalSum(i,i));}TE IN VO BIT::Set(CO VE& a){*TH = BIT{a};}TE IN VO BIT::Initialise(CRI SZ){*TH = BIT(SZ);}TE IN BIT& BIT::OP+=(CO VE&a){ BIT a_copy{ a }; assert(m_SZ == a.m_SZ);for(int i = 1;i <= m_SZ;i++){m_fenwick[i] += a.m_fenwick[i];}RE *TH;}TE VO BIT::Add(CRI i,CO T& n){int j = i + 1;WH(j <= m_SZ){m_fenwick[j] += n;j +=(j & -j);}RE;}TE IN CO T& BIT::LSBSegmentSum(CRI j)CO{assert(0 < j && j <= m_SZ);RE m_fenwick[j];}TE T BIT::InitialSegmentSum(CRI i_final)CO{T sum = 0;int j =(i_final < m_SZ?i_final:m_SZ - 1)+ 1;WH(j > 0){sum += m_fenwick[j];j -= j & -j;}RE sum;}TE IN T BIT::IntervalSum(CRI i_start,CRI i_final)CO{RE InitialSegmentSum(i_final)- InitialSegmentSum(i_start - 1);}TE int BIT::BinarySearch(CO T& n)CO{int PW = m_PW;int j = 0;T sum{};T sum_next{};WH(PW > 0){int j_next = j | PW;if(j_next < m_SZ){sum_next += m_fenwick[j_next];if(sum_next < n){sum = sum_next;j = j_next;}else{sum_next = sum;}}PW >>= 1;}RE j;}TE IN int BIT::BinarySearch(CRI i_start,CO T& n)CO{RE max(i_start,BinarySearch(InitialSegmentSum(i_start)+ n));} TE CL IntervalAddBIT{PU:BIT m_bit_0;BIT m_bit_1;IN IntervalAddBIT(CRI SZ = 0);IN IntervalAddBIT(CO VE& a);IN IntervalAddBIT& OP=(IntervalAddBIT&& a);IN T Get(CRI i)CO;IN VO Set(CRI i,CO T& n);IN VO Set(CO VE& a);IN VO Initialise(CRI SZ = 0);IN IntervalAddBIT& OP+=(CO VE& a);IN VO Add(CRI i,CO T& n);IN VO IntervalAdd(CRI i_start,CRI i_final,CO T& n);IN T InitialSegmentSum(CRI i_final)CO;IN T IntervalSum(CRI i_start,CRI i_final)CO;}; TE IN IntervalAddBIT::IntervalAddBIT(CRI SZ):m_bit_0(SZ),m_bit_1(SZ){}TE IN IntervalAddBIT::IntervalAddBIT(CO VE& a):m_bit_0(),m_bit_1(){CO int SZ = a.SZ();VE diff(SZ);diff[0]= a[0];for(int i = 1;i < SZ;i++){diff[i] = a[i] - a[i-1];}m_bit_0.Set(diff);for(int i = 1;i < SZ;i++){(diff[i]*= 1 - i)-= a[i];}m_bit_1.Set(diff);}TE IN IntervalAddBIT& IntervalAddBIT::OP=(IntervalAddBIT&& a){m_bit_0 = MO(a.m_bit_0);m_bit_1 = MO(a.m_bit_1);}TE IN T IntervalAddBIT::Get(CRI i)CO{RE IntervalSum(i,i);}TE IN VO IntervalAddBIT::Set(CRI i,CO T& n){Add(i,n - IntervalSum(i,i));}TE IN VO IntervalAddBIT::Set(CO VE& a){*TH = IntervalAddBIT(a);}TE IN VO IntervalAddBIT::Initialise(CO int& SZ){m_bit_0.Initialise(SZ);m_bit_1.Initialise(SZ);}TE IN IntervalAddBIT& IntervalAddBIT::OP+=(CO VE& a){IntervalAddBIT a_copy{a};CO int SZ = a.SZ();for(int i = 1;i < SZ;i++){m_bit_0[i] += a_copy.m_bit_0[i];m_bit_1[i] += a_copy.m_bit_1[i];}RE *TH;}TE IN VO IntervalAddBIT::Add(CRI i,CO T& n){IntervalAdd(i,i,n);}TE IN VO IntervalAddBIT::IntervalAdd(CRI i_start,CRI i_final,CO T& n){m_bit_0.Add(i_start,-(i_start - 1)* n);m_bit_0.Add(i_final + 1,i_final * n);m_bit_1.Add(i_start,n);m_bit_1.Add(i_final + 1,- n);}TE IN T IntervalAddBIT::InitialSegmentSum(CRI i_final)CO{RE m_bit_0.InitialSegmentSum(i_final)+ i_final * m_bit_1.InitialSegmentSum(i_final);}TE IN T IntervalAddBIT::IntervalSum(CRI i_start,CRI i_final)CO{RE InitialSegmentSum(i_final)- InitialSegmentSum(i_start - 1);} // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN