#include using namespace std; /* 幾何ライブラリ */ using DD = double; const DD INF = 1LL<<60; // to be set appropriately const DD EPS = 1e-40; // to be set appropriately const DD PI = acosl(-1.0); DD torad(int deg) {return (DD)(deg) * PI / 180;} DD todeg(DD ang) {return ang * 180 / PI;} /* Point */ struct Point { DD x, y; Point(DD x = 0.0, DD y = 0.0) : x(x), y(y) {} friend ostream& operator << (ostream &s, const Point &p) {return s << '(' << p.x << ", " << p.y << ')';} }; inline Point operator + (const Point &p, const Point &q) {return Point(p.x + q.x, p.y + q.y);} inline Point operator - (const Point &p, const Point &q) {return Point(p.x - q.x, p.y - q.y);} inline Point operator * (const Point &p, DD a) {return Point(p.x * a, p.y * a);} inline Point operator * (DD a, const Point &p) {return Point(a * p.x, a * p.y);} inline Point operator * (const Point &p, const Point &q) {return Point(p.x * q.x - p.y * q.y, p.x * q.y + p.y * q.x);} inline Point operator / (const Point &p, DD a) {return Point(p.x / a, p.y / a);} inline Point conj(const Point &p) {return Point(p.x, -p.y);} inline Point rot(const Point &p, DD ang) {return Point(cos(ang) * p.x - sin(ang) * p.y, sin(ang) * p.x + cos(ang) * p.y);} inline Point rot90(const Point &p) {return Point(-p.y, p.x);} inline DD cross(const Point &p, const Point &q) {return p.x * q.y - p.y * q.x;} inline DD dot(const Point &p, const Point &q) {return p.x * q.x + p.y * q.y;} inline DD norm(const Point &p) {return dot(p, p);} inline DD abs(const Point &p) {return sqrt(dot(p, p));} inline DD amp(const Point &p) {DD res = atan2(p.y, p.x); if (res < 0) res += PI*2; return res;} inline bool eq(const Point &p, const Point &q) {return abs(p - q) < EPS;} inline bool operator < (const Point &p, const Point &q) {return (abs(p.x - q.x) > EPS ? p.x < q.x : p.y < q.y);} inline bool operator > (const Point &p, const Point &q) {return (abs(p.x - q.x) > EPS ? p.x > q.x : p.y > q.y);} inline Point operator / (const Point &p, const Point &q) {return p * conj(q) / norm(q);} /* Line */ struct Line : vector { Line(Point a = Point(0.0, 0.0), Point b = Point(0.0, 0.0)) { this->push_back(a); this->push_back(b); } friend ostream& operator << (ostream &s, const Line &l) {return s << '{' << l[0] << ", " << l[1] << '}';} }; // 1:a-bから見てcは左側(反時計回り)、-1:a-bから見てcは右側(時計回り)、0:一直線上 int simple_ccw(const Point &a, const Point &b, const Point &c) { if (cross(b-a, c-a) > EPS) return 1; if (cross(b-a, c-a) < -EPS) return -1; return 0; } // 円や直線の交点 vector crosspoint(const Line &l, const Line &m) { vector res; DD d = cross(m[1] - m[0], l[1] - l[0]); if (abs(d) < EPS) return vector(); res.push_back(l[0] + (l[1] - l[0]) * cross(m[1] - m[0], m[1] - l[0]) / d); return res; } // 外心 Point gaisin(Point a, Point b, Point c) { Line ab((a+b)/2, (a+b)/2 + rot90(a-b)); Line bc((b+c)/2, (b+c)/2 + rot90(b-c)); return crosspoint(ab, bc)[0]; } void solve(){ int Q; cin >> Q; vector v(3); for(int i=0; i<3; i++) cin >> v[i].x >> v[i].y; // 候補 vector alt; for (int i = 0; i < 3; ++i) { for (int j = i+1; j < 3; ++j) { alt.push_back( (v[i] + v[j]) / 2 ); for (int k = j+1; k < 3; ++k) { if (simple_ccw(v[i], v[j], v[k]) == 0) continue; auto r = gaisin(v[i], v[j], v[k]); alt.push_back(r); } } } DD res = INF; Point c; for (auto r : alt) { DD tmp = 0; for (auto p : v) tmp = max(tmp, abs(p - r)); if(res > tmp){ c = r; res = tmp; } } while(Q--){ Point q; cin >> q.x >> q.y; if(abs(q-c)-res < EPS) cout << "Yes\n"; else cout << "No\n"; } } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int T=1; //cin >> T; while(T--) solve(); }