#include using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair; using pil = pair; using pli = pair; using pll = pair; template using minheap = priority_queue, greater>; template using maxheap = priority_queue; template bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template int flg(T x, int i) { return (x >> i) & 1; } int pct(int x) { return __builtin_popcount(x); } int pct(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template void print(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template void printn(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template int lb(const vector &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ub(const vector &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template void rearrange(vector &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template vector id_sort(const vector &v, bool greater = false) { int n = v.size(); vector ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template void reorder(vector &a, const vector &ord) { int n = a.size(); vector b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template pair operator+(const pair &p, const pair &q) { return make_pair(p.first + q.first, p.second + q.second); } template pair operator-(const pair &p, const pair &q) { return make_pair(p.first - q.first, p.second - q.second); } template istream &operator>>(istream &is, pair &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); cerr << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; template struct Primal_Dual { struct edge { int to; F cap; T cost; int rev; edge(int to, F cap, T cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {} }; vector> es; vector d, h; vector pre_v, pre_e; bool negative = false; const F zero_F, INF_F; const T zero_T, INF_T; const int n; Primal_Dual(int n, F zero_F = 0, F INF_F = numeric_limits::max() / 2, T zero_T = 0, T INF_T = numeric_limits::max() / 2) : es(n), d(n), h(n), pre_v(n), pre_e(n), zero_F(zero_F), INF_F(INF_F), zero_T(zero_T), INF_T(INF_T), n(n) {} void add_edge(int from, int to, F cap, T cost) { es[from].emplace_back(to, cap, cost, (int)es[to].size()); es[to].emplace_back(from, zero_F, -cost, (int)es[from].size() - 1); if (cost < zero_T) negative = true; } void bellman_ford(int s) { fill(begin(h), end(h), INF_T); h[s] = zero_T; while (true) { bool update = false; for (int i = 0; i < n; i++) { if (h[i] == INF_T) continue; for (auto &e : es[i]) { if (e.cap > zero_F && h[i] + e.cost < h[e.to]) { h[e.to] = h[i] + e.cost; update = true; } } } if (!update) break; } } void dag_shortest_path(int s) { vector deg(n, 0); for (int i = 0; i < n; i++) { for (auto &e : es[i]) { if (e.cap > zero_F) deg[e.to]++; } } fill(begin(h), end(h), INF_T); h[s] = zero_T; queue que; for (int i = 0; i < n; i++) { if (deg[i] == 0) que.push(i); } while (!que.empty()) { int i = que.front(); que.pop(); for (auto &e : es[i]) { if (e.cap == zero_F) continue; h[e.to] = min(h[e.to], h[i] + e.cost); if (--deg[e.to] == 0) que.push(e.to); } } } void dijkstra(int s) { fill(begin(d), end(d), INF_T); using P = pair; priority_queue, greater

> que; que.emplace(d[s] = zero_T, s); while (!que.empty()) { auto [p, i] = que.top(); que.pop(); if (p > d[i]) continue; for (int j = 0; j < (int)es[i].size(); j++) { edge &e = es[i][j]; if (e.cap > zero_F && d[i] + e.cost + h[i] - h[e.to] < d[e.to]) { d[e.to] = d[i] + e.cost + h[i] - h[e.to]; pre_v[e.to] = i, pre_e[e.to] = j; que.emplace(d[e.to], e.to); } } } } T min_cost_flow(int s, int t, F flow, bool dag = false) { T ret = zero_T; if (negative) dag ? dag_shortest_path(s) : bellman_ford(s); while (flow > zero_F) { dijkstra(s); if (d[t] == INF_T) return INF_T; for (int i = 0; i < n; i++) { if (h[i] == INF_T || d[i] == INF_T) { h[i] = INF_T; } else { h[i] += d[i]; } } F f = flow; for (int now = t; now != s; now = pre_v[now]) f = min(f, es[pre_v[now]][pre_e[now]].cap); ret += h[t] * f, flow -= f; for (int now = t; now != s; now = pre_v[now]) { edge &e = es[pre_v[now]][pre_e[now]]; e.cap -= f, es[now][e.rev].cap += f; } } return ret; } vector> min_cost_flow_slope(int s, int t, bool dag = false) { vector> ret; if (negative) dag ? dag_shortest_path(s) : bellman_ford(s); while (true) { dijkstra(s); if (d[t] == INF_T) break; for (int i = 0; i < n; i++) { if (h[i] == INF_T || d[i] == INF_T) { h[i] = INF_T; } else { h[i] += d[i]; } } F f = INF_F; for (int now = t; now != s; now = pre_v[now]) f = min(f, es[pre_v[now]][pre_e[now]].cap); if (!ret.empty() && ret.back().first == h[t]) { ret.back().second += f; } else { ret.emplace_back(h[t], f); } for (int now = t; now != s; now = pre_v[now]) { edge &e = es[pre_v[now]][pre_e[now]]; e.cap -= f, es[now][e.rev].cap += f; } } return ret; } }; void solve() { int K, N, M; cin >> K >> N >> M; Primal_Dual G(N + 2); int s = N, t = s + 1; rep(i, K) { int x; cin >> x; x--; G.add_edge(s, x, 1, 0); } rep(i, N) { int x; cin >> x; G.add_edge(i, t, x, 0); } rep(i, M) { int u, v; ll d; cin >> u >> v >> d; u--, v--; G.add_edge(u, v, INF, d); G.add_edge(v, u, INF, d); } cout << G.min_cost_flow(s, t, K) << '\n'; } int main() { int T = 1; // cin >> T; while (T--) solve(); }