#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++) #define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--) #define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++) #define pers(x, s) for(ll x = (ll)(s).size()-1; (x) >= 0; (x)--) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define sz(x) ((ll)(x).size()) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() #define outl(...) dump_func(__VA_ARGS__) #define outf(x) cout << fixed << setprecision(16) << (x) << endl #define pb push_back #define fi first #define se second #define inf 2e18 #define eps 1e-12 const double PI = 3.1415926535897932384626433; using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair P; #define double long double struct edge{ ll to, cost; edge(){} edge(ll a, ll b){ to = a, cost = b;} }; const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1}; const int dx8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dy8[] = {0, -1, -1, -1, 0, 1, 1, 1}; const int mod = 998244353; //const int mod = 1000000007; struct mint{ int x; mint(ll y = 0){if(y < 0 || y >= mod) y = (y%mod+mod)%mod; x = y;} mint(const mint &ope) {x = ope.x;} mint operator-(){return mint(-x);} mint operator+(const mint &ope){return mint(x) += ope;} mint operator-(const mint &ope){return mint(x) -= ope;} mint operator*(const mint &ope){return mint(x) *= ope;} mint operator/(const mint &ope){return mint(x) /= ope;} mint& operator+=(const mint &ope){x += ope.x; if(x >= mod) x -= mod; return *this;} mint& operator-=(const mint &ope){x += mod - ope.x; if(x >= mod) x -= mod; return *this;} mint& operator*=(const mint &ope){ll tmp = x; tmp *= ope.x, tmp %= mod; x = tmp; return *this;} mint& operator/=(const mint &ope){ ll n = mod-2; mint mul = ope; while(n){if(n & 1) *this *= mul; mul *= mul; n >>= 1;} return *this; } mint inverse(){return mint(1) / *this;} bool operator ==(const mint &ope){return x == ope.x;} bool operator !=(const mint &ope){return x != ope.x;} bool operator <(const mint &ope)const{return x < ope.x;} }; mint modpow(mint a, ll n){ if(n == 0) return mint(1); if(n % 2) return a * modpow(a, n-1); else return modpow(a*a, n/2); } istream& operator >>(istream &is, mint &ope){ll t; is >> t, ope = mint(t); return is;} ostream& operator <<(ostream &os, mint &ope){return os << ope.x;} ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;} ll modpow(ll a, ll n, ll mod){ if(n == 0) return 1; if(n % 2) return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod; else return modpow((a*a)%mod, n/2, mod) % mod; } vector fact, fact_inv; void make_fact(int n){ fact.resize(n+1), fact_inv.resize(n+1); fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i); fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1); } mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];} mint perm(int n, int k){ return comb(n, k) * fact[k]; } mint divide(int n, int k){ if(n == 0 && k == 0) return 1; return comb(n+k-1, k-1); } template T comb2(ll n, ll k){ if(n < 0 || k < 0 || n < k) return T(0); T ret = 1; rep(i, 1, k) ret *= n-k+i, ret /= i; return ret;} vector prime, pvec, qrime; void make_prime(int n){ prime.resize(n+1); rep(i, 2, n){ if(prime[i] == 0) pvec.push_back(i), prime[i] = i; for(auto p : pvec){ if(i*p > n || p > prime[i]) break; prime[i*p] = p;} } } void make_qrime(int n){ qrime.resize(n+1); rep(i, 2, n){int ni = i / prime[i]; if(prime[i] == prime[ni]) qrime[i] = qrime[ni] * prime[i]; else qrime[i] = prime[i];} } void factorize(ll n, map &mp){ mp.clear(); for(auto p : pvec) while(n % p == 0) mp[p]++, n /= p; if(n > 1) mp[n]++; } bool exceed(ll x, ll y, ll m){return y > 0 && x >= m / y + 1;} void mark(){ cout << "*" << endl; } void yes(){ cout << "Yes" << endl; } void no(){ cout << "No" << endl; } ll floor(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return a/b; else return -((-a+b-1)/b); } ll ceil(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return (a+b-1)/b; else return -((-a)/b); } ll modulo(ll a, ll b){ b = abs(b); return a - floor(a, b) * b;} ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;} ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);} ll lcm(ll a, ll b){return a/gcd(a, b)*b;} template T arith(T x){return x*(x+1)/2;} template T arith2(T x){return x*(x+1)*(x*2+1)/6;} ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;} ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;} string lltos(ll x, ll b = 10){if(x == 0) return "0"; string ret; for(;x;x/=b) ret += x % b + '0'; reverse(all(ret)); return ret;} ll stoll(string &s, ll b = 10){ll ret = 0; for(auto c : s) ret *= b, ret += c - '0'; return ret;} template void uniq(T &vec){sort(all(vec)); vec.erase(unique(all(vec)), vec.end());} int popcount(ull x){ x -= ((x>>1)&0x5555555555555555ULL), x = (x & 0x3333333333333333ULL) + ((x>>2) & 0x3333333333333333ULL); return (((x + (x>>4)) & 0x0F0F0F0F0F0F0F0FULL) * 0x0101010101010101ULL) >> 56; } template vector> rle(vector vec){ vector> ret; for(auto x : vec){if(sz(ret) == 0 || ret.back().first != x) ret.push_back(P(x, 1)); else ret.back().second++;} return ret; } vector> rle(string s){ vector vec; for(auto c : s) vec.push_back(c); return rle(vec);} template pair& operator+=(pair &s, const pair &t){s.first += t.first, s.second += t.second; return s;} template pair& operator-=(pair &s, const pair &t){s.first -= t.first, s.second -= t.second; return s;} template pair operator+(const pair &s, const pair &t){return pair(s.first+t.first, s.second+t.second);} template pair operator-(const pair &s, const pair &t){return pair(s.first-t.first, s.second-t.second);} template T dot(const pair &s, const pair &t){return s.first*t.first + s.second*t.second;} template T cross(const pair &s, const pair &t){return s.first*t.second - s.second*t.first;} template T mdist(pair s, pair t){return abs(s.first-t.first) + abs(s.second-t.second);} template T cdist(pair s, pair t){return max(abs(s.first-t.first), abs(s.second-t.second));} template T edist2(pair s, pair t){return (s.first-t.first)*(s.first-t.first) + (s.second-t.second)*(s.second-t.second);} template ostream& operator << (ostream& os, vector& vec){reps(i, vec) os << vec[i] << " "; return os;} template ostream& operator << (ostream& os, const vector& vec){reps(i, vec) os << vec[i] << " "; return os;} template ostream& operator << (ostream& os, list& ls){for(auto x : ls) os << x << " "; return os;} template ostream& operator << (ostream& os, const list& ls){for(auto x : ls) os << x << " "; return os;} template ostream& operator << (ostream& os, deque& deq){reps(i, deq) os << deq[i] << " "; return os;} template ostream& operator << (ostream& os, pair& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;} template ostream& operator << (ostream& os, const pair& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;} template ostream& operator << (ostream& os, map& ope){ for(auto p : ope) os << "(" << p.first << ", " << p.second << "),";return os;} template ostream& operator << (ostream& os, set& ope){for(auto x : ope) os << x << " "; return os;} template ostream& operator << (ostream& os, multiset& ope){for(auto x : ope) os << x << " "; return os;} template void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";} cout << endl;} template ostream& operator << (ostream& os, array& arr){reps(i, arr) os << arr[i] << " "; return os;} template ostream& operator << (ostream& os, const array& arr){reps(i, arr) os << arr[i] << " "; return os;} void dump_func(){cout << endl;} template void dump_func(Head &&head, Tail &&... tail){cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...);} template void bssert(bool b, T t){ if(!b) cout << t << endl, exit(0); } struct vec2d{ double x, y; vec2d(){} vec2d(double x, double y){ this->x = x, this->y = y; } double add(double a, double b){ if(fabs(a+b) < eps * (fabs(a) + fabs(b))) return 0.0; return a+b; } vec2d operator+(vec2d ope){ return vec2d(add(x, ope.x), add(y, ope.y)); } vec2d operator-(vec2d ope){ return vec2d(add(x, -ope.x), add(y, -ope.y)); } vec2d operator*(double t){ return vec2d(x*t, y*t); } vec2d operator/(double t){ return vec2d(x/t, y/t); } double dot(vec2d ope){ return add(x*ope.x, y*ope.y); } double cross(vec2d ope){ return add(x*ope.y, -y*ope.x); } double norm(){ double d2 = dot(*this); if(d2 > 0) return sqrt(d2); return 0.0; } }; ostream& operator << (ostream& os, vec2d& ope){ cout << make_pair(ope.x, ope.y); return os; } double distPP(vec2d p, vec2d q){ return (p-q).norm(); } double distSP(vec2d p, vec2d q, vec2d x) { if((x-p).dot(q-p) <= 0) return distPP(p, x); if((x-q).dot(p-q) <= 0) return distPP(q, x); return fabs( (x-p).cross(q-p) / distPP(p, q) ); } bool isOnS(vec2d p, vec2d q, vec2d x) { return (p-x).cross(q-x) == 0 && (p-x).dot(q-x) <= 0; } bool isCrossSS(vec2d p, vec2d q, vec2d r, vec2d s) { if((q-p).cross(s-r) == 0){ return isOnS(p, q, r) || isOnS(p, q, s) || isOnS(r, s, p) || isOnS(r, s, q); } double t = (r-p).cross(s-r) / (q-p).cross(s-r); vec2d x = p + (q-p)*t; return isOnS(p, q, x) && isOnS(r, s, x); } double distSS(vec2d p, vec2d q, vec2d r, vec2d s) { if(isCrossSS(p, q, r, s)) return 0; double ret = distSP(p, q, r); ret = min(ret, distSP(p, q, s)); ret = min(ret, distSP(r, s, p)); ret = min(ret, distSP(r, s, q)); return ret; } bool getCrossPointLL(vec2d p, vec2d q, vec2d r, vec2d s, vec2d &dest) //returns false if two lines are parallel. { if((q-p).cross(s-r) == 0) return false; double t = (r-p).cross(s-r) / (q-p).cross(s-r); dest = p + (q-p)*t; return true; } void getCrossPointCC(vec2d c1, double r1, vec2d c2, double r2, vec2d &lp, vec2d &rp) //(c2-c1).cross(lp) <= 0, (c2-c1).cross(rp) >= 0 { vec2d v = c2 - c1, n; double d = v.norm(); double x = (r1*r1-r2*r2+d*d)/(2*d); v = v * (x/d); n = vec2d(-v.y, v.x); if(x >= 0){ n = n * (sqrt(r1*r1-x*x) / n.norm()); lp = c1 + v - n, rp = c1 + v + n; } else{ n = n * (sqrt(r2*r2-(d-x)*(d-x))) / n.norm(); lp = c1 + v + n, rp = c1 + v - n; } } bool isInTriangle(vec2d p, vec2d q, vec2d r, vec2d x) { p = p - r, q = q - r, x = x - r; double s = p.cross(x) / p.cross(q), t = x.cross(q) / p.cross(q); return s >= -eps && t >= -eps && s+t <= 1 + eps; } bool getCircumCenter(vec2d p, vec2d q, vec2d r, vec2d &dest) //returns false if the given triangle is degenerate. { vec2d a = (p+q)/2, b = (p+r)/2; vec2d da = a - p, db = b - p; vec2d na = vec2d(da.y, -da.x), nb = vec2d(db.y, -db.x); na = na / na.norm(), nb = nb / nb.norm(); return getCrossPointLL(a, a+na, b, b+nb, dest); } ll Q; vec2d p[3], c; bool check(double r) { if(r*2 < distPP(p[0], p[1])) return false; vec2d u, v; getCrossPointCC(p[0], r, p[1], r, u, v); if(distPP(p[2], u) <= r){ c = u; return true; } if(distPP(p[2], v) <= r){ c = v; return true; } return false; } int main(void) { ios::sync_with_stdio(0); cin.tie(0); cin >> Q; rep(i, 0, 2) cin >> p[i].x >> p[i].y; double ub = 1e9, lb = 0, mid; rep(i, 1, 100){ mid = (ub+lb)/2; if(check(mid)) ub = mid; else lb = mid; } double r = lb; vec2d q; rep(i, 1, Q){ cin >> q.x >> q.y; if(distPP(c, q) <= r + eps) yes(); else no(); } return 0; }