class Fenwick_Tree: def __init__(self, n): self.n = n self.data = [0] * n def add(self, p, x): p += 1 while p <= self.n: self.data[p - 1] += x p += p & -p def sum(self, l, r): '''範囲[l, r)(lからr-1まで)の総和を求める''' return self._sum(r) - self._sum(l) def _sum(self, r): '''範囲[0, r)(0からr-1まで)の総和を求める''' s = 0 while r > 0: s += self.data[r - 1] r -= r & -r return s # https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans def compression(lst): sort_lst = sorted(set(lst)) compression_lst = [None for _ in range(len(lst))] ele2ind_dict = dict() for i, ele in enumerate(lst): compression_lst[i] = bisect_left(sort_lst, ele) ele2ind_dict[ele] = compression_lst[i] return sort_lst, compression_lst, ele2ind_dict import sys def input(): return sys.stdin.readline().rstrip() n = int(input()) T = [] X = [] for _ in range(n): x, l, r = input().split() l = int(l) r = int(r) T.append(l) T.append(r) X.append((x, l, r)) q = int(input()) Q = [] for _ in range(q): QQ = list(input().split()) Q.append(QQ) if QQ[0] == '1': T.append(int(QQ[2])) elif QQ[0] == '2': T.append(int(QQ[1])) else: T.append(int(QQ[2])) T.append(int(QQ[3])) _, _, Tdict = compression(T) m = len(Tdict) tree = Fenwick_Tree(m + 5) L = dict() R = dict() for i in range(n): x, l, r = X[i] if x not in L: L[x] = SortedMultiset() R[x] = SortedMultiset() L[x].add(Tdict[l]) tree.add(Tdict[l], 1) R[x].add(Tdict[r]) tree.add(Tdict[r] + 1, -1) for i in range(q): QQ = Q[i] if QQ[0] == '1': x, t = QQ[1:] t = int(t) if x not in L: print("No") continue tidx = Tdict[t] idx = bisect_right(L[x], tidx) - 1 if idx == -1: print("No") continue r = R[x][idx] if tidx <= r: print("Yes") else: print("No") elif QQ[0] == '2': t = QQ[1] t = int(t) tidx = Tdict[t] print(tree._sum(tidx + 1)) else: x, l, r = QQ[1:] l = int(l) r = int(r) if x not in L: L[x] = SortedMultiset() R[x] = SortedMultiset() L[x].add(Tdict[l]) tree.add(Tdict[l], 1) R[x].add(Tdict[r]) tree.add(Tdict[r] + 1, -1)