#ifndef LOCAL #define FAST_IO #endif // ============ #include #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i) #define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER2(i, n) for (i32 i = (i32)(n)-1; i >= 0; --i) #define PER3(i, m, n) for (i32 i = (i32)(n)-1; i >= (i32)(m); --i) #define PER(...) OVERRIDE(__VA_ARGS__, PER3, PER2)(__VA_ARGS__) #define ALL(x) begin(x), end(x) #define LEN(x) (i32)(x.size()) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using i32 = signed int; using i64 = signed long long; using f64 = double; using f80 = long double; using pi = pair; using pl = pair; template using V = vector; template using VV = V>; template using VVV = V>>; template using VVVV = V>>>; template using PQR = priority_queue, greater>; template bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } template i32 lob(const V &arr, const T &v) { return (i32)(lower_bound(ALL(arr), v) - arr.begin()); } template i32 upb(const V &arr, const T &v) { return (i32)(upper_bound(ALL(arr), v) - arr.begin()); } template V argsort(const V &arr) { V ret(arr.size()); iota(ALL(ret), 0); sort(ALL(ret), [&](i32 i, i32 j) -> bool { if (arr[i] == arr[j]) { return i < j; } else { return arr[i] < arr[j]; } }); return ret; } #ifdef INT128 using u128 = __uint128_t; using i128 = __int128_t; #endif [[maybe_unused]] constexpr i32 INF = 1000000100; [[maybe_unused]] constexpr i64 INF64 = 3000000000000000100; struct SetUpIO { SetUpIO() { #ifdef FAST_IO ios::sync_with_stdio(false); cin.tie(nullptr); #endif cout << fixed << setprecision(15); } } set_up_io; void scan(char &x) { cin >> x; } void scan(u32 &x) { cin >> x; } void scan(u64 &x) { cin >> x; } void scan(i32 &x) { cin >> x; } void scan(i64 &x) { cin >> x; } void scan(string &x) { cin >> x; } template void scan(V &x) { for (T &ele : x) { scan(ele); } } void read() {} template void read(Head &head, Tail &...tail) { scan(head); read(tail...); } #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__); #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__); #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__); #define I32(...) \ i32 __VA_ARGS__; \ read(__VA_ARGS__); #define I64(...) \ i64 __VA_ARGS__; \ read(__VA_ARGS__); #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__); #define VEC(type, name, size) \ V name(size); \ read(name); #define VVEC(type, name, size1, size2) \ VV name(size1, V(size2)); \ read(name); // ============ #ifdef DEBUGF #else #define DBG(...) (void)0 #endif // ============ #include #include #include // ============ constexpr bool is_prime(unsigned n) { if (n == 0 || n == 1) { return false; } for (unsigned i = 2; i * i <= n; ++i) { if (n % i == 0) { return false; } } return true; } constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) { unsigned ret = 1, self = x; while (y != 0) { if (y & 1) { ret = (unsigned)((unsigned long long)ret * self % mod); } self = (unsigned)((unsigned long long)self * self % mod); y /= 2; } return ret; } template constexpr unsigned primitive_root() { static_assert(is_prime(mod), "`mod` must be a prime number."); if (mod == 2) { return 1; } unsigned primes[32] = {}; int it = 0; { unsigned m = mod - 1; for (unsigned i = 2; i * i <= m; ++i) { if (m % i == 0) { primes[it++] = i; while (m % i == 0) { m /= i; } } } if (m != 1) { primes[it++] = m; } } for (unsigned i = 2; i < mod; ++i) { bool ok = true; for (int j = 0; j < it; ++j) { if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) { ok = false; break; } } if (ok) return i; } return 0; } // y >= 1 template constexpr T safe_mod(T x, T y) { x %= y; if (x < 0) { x += y; } return x; } // y != 0 template constexpr T floor_div(T x, T y) { if (y < 0) { x *= -1; y *= -1; } if (x >= 0) { return x / y; } else { return -((-x + y - 1) / y); } } // y != 0 template constexpr T ceil_div(T x, T y) { if (y < 0) { x *= -1; y *= -1; } if (x >= 0) { return (x + y - 1) / y; } else { return -(-x / y); } } // ============ template struct ModInt { static_assert(mod != 0, "`mod` must not be equal to 0."); static_assert(mod < (1u << 31), "`mod` must be less than (1u << 31) = 2147483648."); unsigned val; static constexpr unsigned get_mod() { return mod; } constexpr ModInt() : val(0) {} template > * = nullptr> constexpr ModInt(T x) : val((unsigned)((long long)x % (long long)mod + (x < 0 ? mod : 0))) {} template > * = nullptr> constexpr ModInt(T x) : val((unsigned)(x % mod)) {} static constexpr ModInt raw(unsigned x) { ModInt ret; ret.val = x; return ret; } constexpr unsigned get_val() const { return val; } constexpr ModInt operator+() const { return *this; } constexpr ModInt operator-() const { return ModInt(0u) - *this; } constexpr ModInt &operator+=(const ModInt &rhs) { val += rhs.val; if (val >= mod) val -= mod; return *this; } constexpr ModInt &operator-=(const ModInt &rhs) { val -= rhs.val; if (val >= mod) val += mod; return *this; } constexpr ModInt &operator*=(const ModInt &rhs) { val = (unsigned long long)val * rhs.val % mod; return *this; } constexpr ModInt &operator/=(const ModInt &rhs) { val = (unsigned long long)val * rhs.inv().val % mod; return *this; } friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) { return ModInt(lhs) += rhs; } friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) { return ModInt(lhs) -= rhs; } friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) { return ModInt(lhs) *= rhs; } friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) { return ModInt(lhs) /= rhs; } constexpr ModInt pow(unsigned long long x) const { ModInt ret = ModInt::raw(1); ModInt self = *this; while (x != 0) { if (x & 1) ret *= self; self *= self; x >>= 1; } return ret; } constexpr ModInt inv() const { static_assert(is_prime(mod), "`mod` must be a prime number."); assert(val != 0); return this->pow(mod - 2); } friend std::istream &operator>>(std::istream &is, ModInt &x) { long long val; is >> val; x.val = val % mod + (val < 0 ? mod : 0); return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val; return os; } friend bool operator==(const ModInt &lhs, const ModInt &rhs) { return lhs.val == rhs.val; } friend bool operator!=(const ModInt &lhs, const ModInt &rhs) { return lhs.val != rhs.val; } }; template void debug(ModInt x) { std::cerr << x.val; } // ============ // ============ #include #include #include // ============ #include #include #include template struct Add { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs + rhs; } static Value inv(const Value &x) { return -x; } }; template struct Mul { using Value = T; static Value id() { return Value(1); } static Value op(const Value &lhs, const Value &rhs) { return lhs * rhs; } static Value inv(const Value &x) { return Value(1) / x; } }; template struct Min { static_assert(std::numeric_limits::is_specialized); using Value = T; static Value id() { return std::numeric_limits::max(); } static Value op(const Value &lhs, const Value &rhs) { return std::min(lhs, rhs); } }; template struct Max { static_assert(std::numeric_limits::is_specialized); using Value = T; static Value id() { return std::numeric_limits::min(); } static Value op(const Value &lhs, const Value &rhs) { return std::max(lhs, rhs); } }; template struct Xor { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs ^ rhs; } static Value inv(const Value &x) { return x; } }; template struct Reversible { using Value = std::pair; static Value id() { return Value(Monoid::id(), Monoid::id()); } static Value op(const Value &v1, const Value &v2) { return Value(Monoid::op(v1.first, v2.first), Monoid::op(v2.second, v1.second)); } }; // ============ template class SegmentTree { public: using Value = typename Monoid::Value; private: int old_length; int length; std::vector node; static int ceil2(int n) { int l = 1; while (l < n) { l <<= 1; } return l; } public: SegmentTree(int n) : old_length(n), length(ceil2(old_length)), node(length << 1, Monoid::id()) { assert(n >= 0); } SegmentTree(const std::vector &v) : old_length((int)v.size()), length(ceil2(old_length)), node(length << 1, Monoid::id()) { for (int i = 0; i < old_length; ++i) { node[i + length] = v[i]; } for (int i = length - 1; i > 0; --i) { node[i] = Monoid::op(node[i << 1], node[i << 1 | 1]); } } template SegmentTree(int n, const F &f) : old_length(n), length(ceil2(n)), node(length << 1, Monoid::id()) { assert(n >= 0); for (int i = 0; i < old_length; ++i) { node[i + length] = f(i); } for (int i = length - 1; i > 0; --i) { node[i] = Monoid::op(node[i << 1], node[i << 1 | 1]); } } const Value &operator[](int idx) const { assert(idx >= 0 && idx < old_length); return node[idx + length]; } void update(int idx, Value val) { assert(idx >= 0 && idx < old_length); idx += length; node[idx] = std::move(val); while (idx != 1) { idx >>= 1; node[idx] = Monoid::op(node[idx << 1], node[idx << 1 | 1]); } } Value prod(int l, int r) const { assert(l >= 0 && l <= r && r <= old_length); Value prodl = Monoid::id(); Value prodr = Monoid::id(); l += length; r += length; while (l != r) { if (l & 1) { prodl = Monoid::op(prodl, node[l++]); } if (r & 1) { prodr = Monoid::op(node[--r], prodr); } l >>= 1; r >>= 1; } return Monoid::op(prodl, prodr); } Value all_prod() const { return node[1]; } }; // ============ using M = ModInt<998244353>; struct Data { M zl, zr, sumlr, suml, sumr, sum; i32 zero, one; i32 len() const { return zero + one; } pair olor() const { i32 l = len(); M tot = M((i64)l * (l + 1) / 2); return make_pair(tot - zl, tot - zr); } }; struct Ops { using Value = Data; static Data id() { return Data{M(), M(), M(), M(), M(), M(), 0, 0}; } static Data op(Data l, Data r) { Data ret; ret.zl = l.zl + r.zl + M(l.len()) * M(r.zero); ret.zr = r.zr + l.zr + M(r.len()) * M(l.zero); auto [lol, lor] = l.olor(); auto [rol, ror] = r.olor(); ret.sum = l.sum + r.sum + l.zero * r.one + l.one * r.zero; ret.suml = l.suml + (r.suml + r.sum * l.len()) + l.zl * r.one + lol * r.zero; ret.sumr = r.sumr + (l.sumr + l.sum * r.len()) + r.zr * l.one + ror * l.zero; ret.sumlr = (l.sumlr + l.suml * r.len()) + (r.sumlr + r.sumr * l.len()) + l.zl * ror + lol * r.zr; ret.zero = l.zero + r.zero; ret.one = l.one + r.one; return ret; } static Data _zero() { return Data{M(1), M(1), M(), M(), M(), M(), 1, 0}; } static Data _one() { return Data{M(), M(), M(), M(), M(), M(), 0, 1}; } }; void solve() { I32(n, q); STR(s); SegmentTree seg(n, [&](i32 i) -> Data { return (s[i] == '0' ? Ops::_zero() : Ops::_one()); }); REP(qi, q) { I32(type); if (type == 1) { I32(i); --i; s[i] ^= '0' ^ '1'; seg.update(i, (s[i] == '0' ? Ops::_zero() : Ops::_one())); } else { I32(l, r); --l; Data prod = seg.prod(l, r); DBG(prod.zl, prod.zr, prod.sum, prod.suml, prod.sumr, prod.sumlr); cout << prod.sumlr << '\n'; } } } int main() { i32 t = 1; // cin >> t; while (t--) { solve(); } }