using System; using static System.Console; using System.Linq; using System.Collections.Generic; class Program { static int NN => int.Parse(ReadLine()); static int[] NList => ReadLine().Split().Select(int.Parse).ToArray(); static int[] NMi => ReadLine().Split().Select(c => int.Parse(c) - 1).ToArray(); static int[][] NMap(int n) => Enumerable.Repeat(0, n).Select(_ => NMi).ToArray(); public static void Main() { Solve(); } static void Solve() { var c = NList; var (n, m, k) = (c[0], c[1], c[2]); var x = ReadLine(); var mod = 998_244_353; var ans = CountX(n, m, k, x, mod); if (x.Any(c => c == '0')) { var x2 = x.ToCharArray(); for (var i = x2.Length - 1; i >= 0; --i) { if (x2[i] == '0') { x2[i] = '1'; break; } else { x2[i] = '0'; } } ans = (ans + mod - CountX(n, m, k, string.Concat(x2), mod)) % mod; } WriteLine(ans); } static long CountX(int n, int m, int k, string x, int mod) { var dp = new long[m + 1, n + 1]; dp[0, n] = 1; var ncr = new NCR(n + 1, mod); for (var i = 0; i < m; ++i) for (var j = 0; j <= n; ++j) { if (x[i] == '0') { for (var one = 0; one <= j; ++one) dp[i + 1, j - one] = (dp[i + 1, j - one] + dp[i, j] * ncr.Calc(j, one) % mod * ncr.Exp(2, n - j) % mod) % mod; } else { for (var zero = 0; zero <= j && zero < k; ++zero) dp[i + 1, j] = (dp[i + 1, j] + dp[i, j] * ncr.Calc(j, zero) % mod * ncr.Exp(2, n - j) % mod) % mod; } } var ans = 0L; for (var i = 0; i <= n; ++i) ans = (ans + dp[m, i]) % mod; return ans; } class NCR { int[] facts; int[] revFacts; int mod; public NCR(int n, int mod) { facts = new int[n + 1]; revFacts = new int[n + 1]; this.mod = mod; facts[0] = 1; var tmp = 1L; for (var i = 1; i <= n; ++i) { tmp = tmp * i % mod; facts[i] = (int)tmp; } tmp = Exp(facts[n], mod - 2); revFacts[n] = (int)tmp; for (var i = n; i > 1; --i) { tmp = tmp * i % mod; revFacts[i - 1] = (int)tmp; } revFacts[0] = 1; } public long Exp(long n, long k) { n = n % mod; if (k == 0) return 1; if (k == 1) return n; var half = Exp(n, k / 2); var result = half * half % mod; return ((k % 2) == 0) ? result : (result * n % mod); } public long Calc(int n, int r) { return (long)facts[n] * revFacts[r] % mod * revFacts[n - r] % mod; } /// nが大きくrが小さい場合の計算 public long Calc2(int n, int r) { var tmp = 1L; for (var i = 0; i < r; ++i) { tmp = tmp * (n - i) % mod; } return tmp * revFacts[r] % mod; } public long NPR(int n, int r) { return (long)facts[n] * revFacts[r] % mod; } public long Fact(int n) { return facts[n]; } public long RevFact(int n) { return revFacts[n]; } public long Inverse(int n) { return (long)revFacts[n] * facts[n - 1] % mod; } } }