// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; namespace templates { // type using ll = long long; using ull = unsigned long long; using Pii = pair; using Pil = pair; using Pli = pair; using Pll = pair; template using pq = priority_queue; template using qp = priority_queue, greater>; // clang-format off #define vec(T, A, ...) vector A(__VA_ARGS__); #define vvec(T, A, h, ...) vector> A(h, vector(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector>> A(h1, vector>(h2, vector(__VA_ARGS__))); // clang-format on // for loop #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) // declare and input // clang-format off #define INT(...) int __VA_ARGS__; inp(__VA_ARGS__); #define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__); #define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__); #define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__); #define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___); #define VEC(T, A, n) vector A(n); inp(A); #define VVEC(T, A, n, m) vector> A(n, vector(m)); inp(A); // clang-format on // const value const ll MOD1 = 1000000007; const ll MOD9 = 998244353; const double PI = acos(-1); // other macro #ifndef RIN__LOCAL #define endl "\n" #endif #define spa ' ' #define len(A) ll(A.size()) #define all(A) begin(A), end(A) // function vector stoc(string &S) { int n = S.size(); vector ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } string ctos(vector &S) { int n = S.size(); string ret = ""; for (int i = 0; i < n; i++) ret += S[i]; return ret; } template auto min(const T &a) { return *min_element(all(a)); } template auto max(const T &a) { return *max_element(all(a)); } template auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } template T sum(vector &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template vector compression(vector X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } // input and output namespace io { // vector template istream &operator>>(istream &is, vector &A) { for (auto &a : A) is >> a; return is; } template ostream &operator<<(ostream &os, vector &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << ' '; } return os; } // vector> template istream &operator>>(istream &is, vector> &A) { for (auto &a : A) is >> a; return is; } template ostream &operator<<(ostream &os, vector> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // pair template istream &operator>>(istream &is, pair &A) { is >> A.first >> A.second; return is; } template ostream &operator<<(ostream &os, pair &A) { os << A.first << ' ' << A.second; return os; } // vector> template istream &operator>>(istream &is, vector> &A) { for (size_t i = 0; i < A.size(); i++) { is >> A[i]; } return is; } template ostream &operator<<(ostream &os, vector> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // tuple template struct TuplePrint { static ostream &print(ostream &os, const T &t) { TuplePrint::print(os, t); os << ' ' << get(t); return os; } }; template struct TuplePrint { static ostream &print(ostream &os, const T &t) { os << get<0>(t); return os; } }; template ostream &operator<<(ostream &os, const tuple &t) { TuplePrint::print(os, t); return os; } // io functions void FLUSH() { cout << flush; } void print() { cout << endl; } template void print(Head &&head, Tail &&...tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(std::forward(tail)...); } template void prisep(vector &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template void priend(T A, S end) { cout << A << end; } template void prispa(T A) { priend(A, spa); } template bool printif(bool f, T A, S B) { if (f) print(A); else print(B); return f; } template void inp(T &...a) { (cin >> ... >> a); } } // namespace io using namespace io; // read graph vector> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector> edges(n, vector()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template vector>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector>> edges(n, vector>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template vector>> read_wtree(int n, int indexed = 1) { return read_wedges(n, n - 1, false, indexed); } // yes / no namespace yesno { // yes inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } // no inline bool no(bool f = true) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = true) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = true) { cout << (!f ? "YES" : "NO") << endl; return f; } // possible inline bool possible(bool f = true) { cout << (f ? "possible" : "impossible") << endl; return f; } inline bool Possible(bool f = true) { cout << (f ? "Possible" : "Impossible") << endl; return f; } inline bool POSSIBLE(bool f = true) { cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // impossible inline bool impossible(bool f = true) { cout << (!f ? "possible" : "impossible") << endl; return f; } inline bool Impossible(bool f = true) { cout << (!f ? "Possible" : "Impossible") << endl; return f; } inline bool IMPOSSIBLE(bool f = true) { cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // Alice Bob inline bool Alice(bool f = true) { cout << (f ? "Alice" : "Bob") << endl; return f; } inline bool Bob(bool f = true) { cout << (f ? "Bob" : "Alice") << endl; return f; } // Takahashi Aoki inline bool Takahashi(bool f = true) { cout << (f ? "Takahashi" : "Aoki") << endl; return f; } inline bool Aoki(bool f = true) { cout << (f ? "Aoki" : "Takahashi") << endl; return f; } } // namespace yesno using namespace yesno; } // namespace templates using namespace templates; template struct ReRooting { int n; struct E { int from; int to; Edge edge; E(int from, int to, Edge edge) : from(from), to(to), edge(edge) {} }; std::vector edges; std::vector es; std::vector dp; ReRooting() = default; ReRooting(int n) : n(n) { edges.reserve(2 * n - 2); es.assign(n + 1, 0); } void add_edge(int u, int v, Edge &edge) { edges.emplace_back(u, v, edge); edges.emplace_back(v, u, edge); es[u + 1]++; es[v + 1]++; } // Edge type で istream >> できるようにしていることが前提 void read_edges(int indexed = 1) { for (int i = 0; i < n - 1; i++) { int u, v; Edge edge; std::cin >> u >> v >> edge; u -= indexed; v -= indexed; add_edge(u, v, edge); } } std::vector run() { reorder_edges(); dp.resize(n); for (int i = 0; i < n; i++) dp[i] = e(i); dfs(0, -1); dfs2(0, -1); return dp; } private: void reorder_edges() { std::sort(edges.begin(), edges.end(), [](const E &a, const E &b) { return a.from < b.from; }); for (int i = 1; i < n + 1; i++) { es[i] += es[i - 1]; } } void dfs(int v, int p) { for (int i = es[v]; i < es[v + 1]; i++) { auto &edge = edges[i]; if (edge.to == p) continue; dfs(edge.to, v); dp[v] = merge(dp[v], f(dp[edge.to], edge.edge)); } } void dfs2(int v, int p) { int m = es[v + 1] - es[v]; std::vector dpL(m + 1, e(v)), dpR(m); for (int i = 0; i < m; i++) { auto &edge = edges[es[v] + i]; dpL[i + 1] = merge(dpL[i], f(dp[edge.to], edge.edge)); } for (int i = m - 1; i >= 0; i--) { auto &edge = edges[es[v] + i]; if (i == m - 1) { dpR[i] = f(dp[edge.to], edge.edge); } else { dpR[i] = merge(dpR[i + 1], f(dp[edge.to], edge.edge)); } } for (int i = es[v]; i < es[v + 1]; i++) { auto &edge = edges[i]; if (edge.to == p) continue; if (i == es[v + 1] - 1) { dp[v] = dpL[m - 1]; } else { dp[v] = merge(dpL[i - es[v]], dpR[i - es[v] + 1]); } dfs2(edge.to, v); } dp[v] = dpL[m]; } }; /* // template // https://judge.yosupo.jp/problem/tree_path_composite_sum using mint = modint9; // vector A; struct Edge { mint b; mint c; friend istream &operator>>(istream &is, Edge &e) { return is >> e.b >> e.c; } }; struct SubTree { mint a; mint sz; }; SubTree e(int i) { return {A[i], 1}; } SubTree merge(const SubTree a, const SubTree b) { return {a.a + b.a, a.sz + b.sz}; } SubTree f(const SubTree a, const Edge b) { return {a.a * b.b + b.c * a.sz, a.sz}; } */ vector V; struct Edge { friend istream &operator>>(istream &is, Edge &e) { return is; } }; struct SubTree { bool root; ll c0; ll c1; ll c2; bool is_ghost; ll add_if_par_ghost; bool add_child_ghost; }; SubTree e(int i) { return {true, 0, 0, V[i] ? 1 : 0, V[i], V[i] ? 0 : 1, false}; } SubTree merge(const SubTree a, const SubTree b) { SubTree ret; if (a.root) { ret.root = true; ret.c0 = a.c0 + b.c1; ret.c1 = a.c1 + b.c2; ret.c2 = a.c2 + b.c2; ret.add_if_par_ghost = a.add_if_par_ghost; ret.is_ghost = a.is_ghost; ret.add_child_ghost = a.add_child_ghost; if (a.is_ghost) { ret.c2 += b.add_if_par_ghost; } if (b.is_ghost and !a.add_child_ghost) { ret.c1 += 1; if (!ret.is_ghost) ret.c2 += 1; ret.add_child_ghost = true; ret.add_if_par_ghost = 0; } } else if (b.root) { ret.root = true; ret.c0 = a.c1 + b.c0; ret.c1 = a.c2 + b.c1; ret.c2 = a.c2 + b.c2; ret.add_if_par_ghost = b.add_if_par_ghost; ret.is_ghost = b.is_ghost; ret.add_child_ghost = b.add_child_ghost; if (b.is_ghost) { ret.c2 += a.add_if_par_ghost; } if (a.is_ghost and !b.add_child_ghost) { ret.c1 += 1; ret.c2 += 1; if (!ret.is_ghost) ret.add_child_ghost = true; ret.add_if_par_ghost = 0; } } else { ret.root = false; ret.c0 = a.c0 + b.c0; ret.c1 = a.c1 + b.c1; ret.c2 = a.c2 + b.c2; ret.is_ghost = a.is_ghost || b.is_ghost; ret.add_if_par_ghost = a.add_if_par_ghost + b.add_if_par_ghost; } return ret; } SubTree f(const SubTree a, const Edge b) { auto ret = a; ret.root = false; return ret; } void solve() { INT(n); ReRooting G(n); G.read_edges(); INT(m); V.assign(n, false); fori(m) { INT(v); V[v - 1] = true; } auto dp = G.run(); fori(i, n) { print(dp[i].c0); } } int main() { cin.tie(0)->sync_with_stdio(0); // cout << fixed << setprecision(12); int t; t = 1; // cin >> t; while (t--) solve(); return 0; }