// https://judge.yosupo.jp/submission/186019 #include #include using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef vector> Graph; typedef pair pii; typedef pair pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const int MOD2 = 1e9+7; const double PI = acos(-1); vector di = {1,0,-1,0}; vector dj = {0,1,0,-1}; #ifdef LOCAL # include # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast(0)) #endif template struct RangeTree { using CT = CoordinateType; using Point = pair; vector points; vector> yx; vector> seg; int n; void _set(int idx, Point p, S val){ int i = lower_bound(yx[idx].begin(), yx[idx].end(), Point{p.second, p.first}) - yx[idx].begin(); seg[idx].set(i, val); } S _prod(int idx, CT yl, CT yr){ auto comp = [](const Point &lhs, const Point &rhs) {return lhs.first < rhs.first; }; int il = lower_bound(yx[idx].begin(), yx[idx].end(), Point{yl, yl}, comp) - yx[idx].begin(); int ir = lower_bound(yx[idx].begin(), yx[idx].end(), Point{yr, yr}, comp) - yx[idx].begin(); return seg[idx].prod(il, ir); } void add_point(CT x, CT y){ points.push_back(Point{x, y}); } void build(){ sort(points.begin(), points.end()); points.erase(unique(points.begin(), points.end()), points.end()); n = points.size(); yx.resize(2 * n); for(int i = 0; i < n; i++) yx[i + n] = { Point{points[i].second, points[i].first}}; for(int i = n - 1; i > 0; i--){ auto &lc = yx[2 * i]; auto &rc = yx[2 * i + 1]; merge(lc.begin(), lc.end(), rc.begin(), rc.end(), back_inserter(yx[i])); yx[i].erase(unique(yx[i].begin(), yx[i].end()), yx[i].end()); } for(const auto &v : yx) seg.emplace_back(v.size()); } void set(CT x, CT y, S val){ int i = lower_bound(points.begin(), points.end(), Point{x, y}) - points.begin() + n; while(i){ _set(i, Point{x, y}, val); i = i >> 1; } } S prod(CT xl, CT xr, CT yl, CT yr){ auto comp = [](const Point &lhs, const Point &rhs) {return lhs.first < rhs.first; }; int l = lower_bound(points.begin(), points.end(), Point{xl, yr}, comp) - points.begin() + n; int r = lower_bound(points.begin(), points.end(), Point{xr, yr}, comp) - points.begin() + n; S sml = e(), smr = e(); while(l < r){ if(l & 1) sml = op(sml, _prod(l++, yl, yr)); if(r & 1) smr = op(_prod(--r, yl, yr), smr); l >>= 1; r >>= 1; } return op(sml, smr); } S get(CT x, CT y){ return prod(x, x + 1, y, y + 1); } }; using S = int; S op(S a, S b){ return a + b; } S e(){ return 0; } //https://drken1215.hatenablog.com/entry/2018/06/08/210000 //COMinit()を忘れない!!! const ll NMAX = 303030; const ll MOD = 998244353; //const int MOD = 1e9+7; ll fac[NMAX],finv[NMAX],inv[NMAX]; void COMinit(){ fac[0] = fac[1] = 1LL; finv[0] = finv[1] = 1LL; inv[1] = 1LL; for (int i=2;i> N; vector P(N); rep(i,N) cin >> P[i], P[i]--; RangeTree RT; rep(i,N) RT.add_point(i, P[i]); RT.build(); rep(i,N) RT.set(i, P[i], 1); mint ans = 0; fenwick_tree left(N); fenwick_tree right(N); rep(i,N) right.add(i, 1); for(int c = 0; c < N; c++){ // int lu = RT.prod(0, c, P[c] + 1, N); // int ld = RT.prod(0, c, 0, P[c]); // int ru = RT.prod(c, N, P[c] + 1, N); // int rd = RT.prod(c, N, 0, P[c]); // ans += nCr(lu + rd, lu) * nCr(ld + ru, ru); int lu = left.sum(P[c] + 1, N); int ld = left.sum(0, P[c]); int ru = right.sum(P[c] + 1, N); int rd = right.sum(0, P[c]); ans += nCr(lu + rd, lu) * nCr(ld + ru, ru); left.add(P[c], 1); right.add(P[c], -1); } cout << ans << endl; }