// https://judge.yosupo.jp/submission/186019 #include #include using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef vector> Graph; typedef pair pii; typedef pair pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const int MOD2 = 1e9+7; const double PI = acos(-1); vector di = {1,0,-1,0}; vector dj = {0,1,0,-1}; #ifdef LOCAL # include # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast(0)) #endif //https://drken1215.hatenablog.com/entry/2018/06/08/210000 //COMinit()を忘れない!!! const ll NMAX = 303030; const ll MOD = 998244353; //const int MOD = 1e9+7; ll fac[NMAX],finv[NMAX],inv[NMAX]; void COMinit(){ fac[0] = fac[1] = 1LL; finv[0] = finv[1] = 1LL; inv[1] = 1LL; for (int i=2;i> N; vector P(N); rep(i,N) cin >> P[i], P[i]--; mint ans = 0; fenwick_tree left(N); fenwick_tree right(N); rep(i,N) right.add(i, 1); for(int c = 0; c < N; c++){ int lu = left.sum(P[c] + 1, N); int ld = left.sum(0, P[c]); int ru = right.sum(P[c] + 1, N); int rd = right.sum(0, P[c]); ans += nCr(lu + rd, lu) * nCr(ld + ru, ru); left.add(P[c], 1); right.add(P[c], -1); } cout << ans << endl; }