/* 💕💕💕💕💕 💗💗💗💗💗 /)/) ( . .) ( づ💗 💗💗💗 💗💗💗 💗💗💗💗💗💗💗💗💗 💗💗💗💗💗💗💗💗💗 💗💗💗💗💗💗💗 💗💗💗💗💗 💗💗💗 💗 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include template std::ostream &operator<<(std::ostream &os, const std::pair &p) { os << p.first << " " << p.second; return os; } template std::istream &operator>>(std::istream &is, std::pair &p) { is >> p.first >> p.second; return is; } template std::ostream &operator<<(std::ostream &os, const std::vector &v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 != (int)v.size() ? " " : ""); } return os; } template std::istream &operator>>(std::istream &is, std::vector &v) { for (T &in : v) is >> in; return is; } template struct FenwickTree { std::vector bit; int n; FenwickTree(int _n) : n(_n), bit(_n) {} T sum(int r) { T ret = 0; for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r]; return ret; } T sum(int l, int r) { assert(l <= r); return sum(r) - sum(l - 1); } // [l, r] void add(int idx, T delta) { for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta; } void set(int idx, T val) { add(idx, val - sum(idx, idx)); } }; std::pair, std::vector> get_prime_factor_with_kinds( int n) { std::vector prime_factors; std::vector cnt; // number of i_th factor for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { prime_factors.push_back(i); cnt.push_back(0); while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++; } } if (n > 1) prime_factors.push_back(n), cnt.push_back(1); assert(prime_factors.size() == cnt.size()); return {prime_factors, cnt}; } namespace internal { template struct csr { std::vector start; std::vector elist; explicit csr(int n, const std::vector> &edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; } // namespace internal struct scc_graph { public: explicit scc_graph(int n) : _n(n) {} int num_vertices() { return _n; } void add_edge(int from, int to) { edges.push_back({from, {to}}); } // @return pair of (# of scc, scc id) std::pair> scc_ids() { auto g = internal::csr(_n, edges); int now_ord = 0, group_num = 0; std::vector visited, low(_n), ord(_n, -1), ids(_n); visited.reserve(_n); auto dfs = [&](auto self, int v) -> void { low[v] = ord[v] = now_ord++; visited.push_back(v); for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto to = g.elist[i].to; if (ord[to] == -1) { self(self, to); low[v] = std::min(low[v], low[to]); } else { low[v] = std::min(low[v], ord[to]); } } if (low[v] == ord[v]) { while (true) { int u = visited.back(); visited.pop_back(); ord[u] = _n; ids[u] = group_num; if (u == v) break; } group_num++; } }; for (int i = 0; i < _n; i++) { if (ord[i] == -1) dfs(dfs, i); } for (auto &x : ids) { x = group_num - 1 - x; } return {group_num, ids}; } std::vector> scc() { auto ids = scc_ids(); int group_num = ids.first; std::vector counts(group_num); for (auto x : ids.second) counts[x]++; std::vector> groups(ids.first); for (int i = 0; i < group_num; i++) { groups[i].reserve(counts[i]); } for (int i = 0; i < _n; i++) { groups[ids.second[i]].push_back(i); } return groups; } private: int _n; struct edge { int to; }; std::vector> edges; }; template struct DSU { std::vector f, siz; DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); } T leader(T x) { while (x != f[x]) x = f[x] = f[f[x]]; return x; } bool same(T x, T y) { return leader(x) == leader(y); } bool merge(T x, T y) { x = leader(x); y = leader(y); if (x == y) return false; siz[x] += siz[y]; f[y] = x; return true; } T size(int x) { return siz[leader(x)]; } }; template struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os, const ModInt &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; using mint = ModInt<998244353>; void solve() { int n; std::cin >> n; std::vector> a(2 * n); for (int i = 0; i < n; i++) { int x; std::cin >> x; a[i] = {x, 0}; } for (int i = 0; i < n; i++) { int x; std::cin >> x; a[i + n] = {x, 1}; } std::vector fac(n + 1); fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * mint(i); std::sort(a.begin(), a.end()); int x = 0, y = 0; for (int i = 0; i < n; i++) { auto [_, t] = a[i]; if (t == 0) x++; else y++; } std::cout << fac[x] * fac[y] << "\n"; } int main() { int t = 1; std::ios::sync_with_stdio(false); std::cin.tie(nullptr); // std::cin >> t; while (t--) solve(); return 0; }