class Fenwick_Tree: def __init__(self, n): self._n = n self.data = [0] * n def add(self, p, x): assert 0 <= p < self._n p += 1 while p <= self._n: self.data[p - 1] += x p += p & -p def sum(self, l, r): assert 0 <= l <= r <= self._n return self._sum(r) - self._sum(l) def _sum(self, r): s = 0 while r > 0: s += self.data[r - 1] r -= r & -r return s def get_size(self, x): x = self.find(x) while r > 0: s += self.data[r - 1] r -= r & -r return s def get(self, k): k += 1 x, r = 0, 1 while r < self._n: r <<= 1 len = r while len: if x + len - 1 < self._n: if self.data[x + len - 1] < k: k -= self.data[x + len - 1] x += len len >>= 1 return x N = int(input()) P = list(map(int, input().split())) TL, TR = Fenwick_Tree(N), Fenwick_Tree(N) for i in range(N): TR.add(i, 1) mod = 998244353 n = 505050 fact = [1] * (n + 1) invfact = [1] * (n + 1) for i in range(1, n): fact[i + 1] = ((i+1) * fact[i]) % mod invfact[n] = pow(fact[n], mod - 2, mod) for i in range(n - 1, -1, -1): invfact[i] = invfact[i + 1] * (i + 1) % mod def comb(n, r): if n < 0 or r < 0 or n - r < 0: return 0 return fact[n] * invfact[r] * invfact[n - r] % mod ans = 0 for i in range(N): p = P[i] - 1 TL.add(p, 1) TR.add(p, -1) aL, bL = TL.sum(0, p), TL.sum(p+1, N) aR, bR = TR.sum(0, p), TR.sum(p+1, N) ans += comb(aL + bR, aL) * comb(aR + bL, aR) ans %= mod print(ans)