// 誤解法(indexをずらして区間和をセグメント木の区間和取得で処理、ただしメモリが重め)チェック #ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN inline void Solve() { // Nの入力受け取り CEXPR( int , bound_N , 1e7 ); CIN_ASSERT( N , 1 , bound_N ); // Bの入力受け取り CEXPR( ll , bound_B , 1e9 ); CIN_ASSERT( B , 1 , bound_B ); // Qの入力受け取り CEXPR( int , bound_Q , 1e6 ); CIN_ASSERT( Q , 1 , bound_Q ); // 合同式での四則演算を扱う型の法をBに設定 QuotientRing::SetStaticModulo( &B ); // C_1,D_1の入力受け取りとAの初期値計算 CEXPR( ll , bound_CD1 , 1e9 ); CIN_ASSERT( C_1 , 0 , bound_CD1 ); CIN_ASSERT( D_1 , 0 , bound_CD1 ); QuotientRing A_0 = C_1; QuotientRing R_1 = D_1; // A_1,...,A_{N-1}を格納 vector> A( N - 1 , A_0 * R_1 ); FOR( i , 1 , N - 1 ){ A[i] = A[i-1] * R_1; } // 抽象セグメント木を法Bの加法演算と(A_1,...,A_{N-1})で初期化 AbstractSegmentTree segtree{ AdditiveMonoid>() , A }; // C_2,D_2の入力受け取りとi_qの初期値計算 CEXPR( ll , bound_CD2 , 1e7 ); CIN_ASSERT( C_2 , 0 , bound_CD2 ); CIN_ASSERT( D_2 , 0 , bound_CD2 ); ll i_q = move( C_2 %= N ); // C_3,D_3の入力受け取りとj_qの初期値計算 CEXPR( ll , bound_CD3 , 1e7 ); CIN_ASSERT( C_3 , 0 , bound_CD3 ); CIN_ASSERT( D_3 , 0 , bound_CD3 ); ll j_q = move( C_3 %= N ); // C_4,D_4の入力受け取りとx_q mod Bの初期値計算 CEXPR( ll , bound_CD4 , 1e9 ); CIN_ASSERT( C_4 , 0 , bound_CD4 ); CIN_ASSERT( D_4 , 0 , bound_CD4 ); QuotientRing x_q = C_4; QuotientRing D_4_mod_B = D_4; // C_5,D_5の入力受け取りとy_q mod Bの初期値計算 CEXPR( ll , bound_CD5 , 1e9 ); CIN_ASSERT( C_5 , 0 , bound_CD5 ); CIN_ASSERT( D_5 , 0 , bound_CD5 ); QuotientRing y_q = C_5; QuotientRing D_5_mod_B = D_5; REPEAT( Q ){ // Aのi個目の成分をxに変更 if( i_q == 0 ){ A_0 = x_q; } else { segtree.Set( i_q - 1 , x_q ); } // f(j_q,y_q)を格納する変数 QuotientRing fjy{}; // y_q羃をBで割った余りを格納する変数 QuotientRing y_power{ 1 }; int j = j_q; while( j > 0 ){ int j_next = j - ( j & -j ); // fjyにy_q羃とAの区間和の積を加算 fjy += y_power * segtree.IntervalProduct( j_next , j - 1 ); // y羃を更新 y_power *= y_q; // jを更新 j = j_next; } // 最高次の寄与も加算 fjy += y_power * A_0; // 最終的なfjyの値を出力 const ll& answer = fjy.Represent(); COUT( answer < 0 ? answer + B : answer ); // クエリを更新 ( i_q *= D_2 ) %= N; ( j_q *= D_3 ) %= N; x_q *= D_4_mod_B; y_q *= D_5_mod_B; } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // グラフ用 template typename V> inline auto Get( const V& a ) { return [&]( const int& i ){ return a[i]; }; } // VVV テンプレート引数用の関数は以下に挿入する。 // AAA テンプレート引数用の関数は以上に挿入する。 #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY // https://github.com/p-adic/cpp // VVV ライブラリは以下に挿入する。 template class QuotientRing { protected: INT m_n; const INT* m_p_M; static const INT* g_p_M; public: inline QuotientRing() noexcept; inline QuotientRing( const INT& n , const INT* const& p_M = g_p_M ) noexcept; inline QuotientRing( const QuotientRing& n ) noexcept; inline QuotientRing& operator+=( const QuotientRing& n ) noexcept; template inline QuotientRing& operator+=( const T& n ) noexcept; // operator<が定義されていても負の数は正に直さず剰余を取ることに注意。 inline QuotientRing& operator-=( const QuotientRing& n ) noexcept; template inline QuotientRing& operator-=( const T& n ) noexcept; inline QuotientRing& operator*=( const QuotientRing& n ) noexcept; template inline QuotientRing& operator*=( const T& n ) noexcept; // *m_p_Mが素数でかつnの逆元が存在する場合のみサポート。 inline QuotientRing& operator/=( const QuotientRing& n ); template inline QuotientRing& operator/=( const T& n ); // m_nの正負やm_p_Mの一致込みの等号。 inline bool operator==( const QuotientRing& n ) const noexcept; // m_nの正負込みの等号。 template inline bool operator==( const T& n ) const noexcept; template inline bool operator!=( const T& n ) const noexcept; template inline QuotientRing operator+( const T& n1 ) const noexcept; inline QuotientRing operator-() const noexcept; template inline QuotientRing operator-( const T& n1 ) const noexcept; template inline QuotientRing operator*( const T& n1 ) const noexcept; // *m_p_Mが素数でかつn1の逆元が存在する場合のみサポート。 template inline QuotientRing operator/( const T& n1 ) const; inline const INT& Represent() const noexcept; inline const INT& GetModulo() const noexcept; inline void SetModulo( const INT* const& p_M = nullptr ) noexcept; static inline const INT& GetStaticModulo() noexcept; static inline void SetStaticModulo( const INT* const& p_M ) noexcept; template static QuotientRing Power( const QuotientRing& n , T exponent ); // *m_p_Mが素数でかつnの逆元が存在する場合のみサポート。 static QuotientRing Inverse( const QuotientRing& n ); }; template inline QuotientRing Power( const QuotientRing& n , T exponent ); // *(n.m_p_M)が素数でかつnの逆元が存在する場合のみサポート。 template inline QuotientRing Inverse( const QuotientRing& n ); template inline basic_istream& operator>>( basic_istream& is , QuotientRing& n ); template inline basic_ostream& operator<<( basic_ostream& os , const QuotientRing& n ); template const INT* QuotientRing::g_p_M = nullptr; template inline QuotientRing::QuotientRing() noexcept : m_n() , m_p_M( g_p_M ) {} template inline QuotientRing::QuotientRing( const INT& n , const INT* const& p_M ) noexcept : m_n( p_M == nullptr ? n : n % *p_M ) , m_p_M( p_M ) {} template inline QuotientRing::QuotientRing( const QuotientRing& n ) noexcept : m_n( n.m_n ) , m_p_M( n.m_p_M ) {} template inline QuotientRing& QuotientRing::operator+=( const QuotientRing& n ) noexcept { if( m_p_M == nullptr ){ m_p_M = n.m_p_M; } m_n += n.m_n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template template inline QuotientRing& QuotientRing::operator+=( const T& n ) noexcept { m_p_M == nullptr ? m_n += n : ( m_n += n % *m_p_M ) %= *m_p_M; return *this; } template inline QuotientRing& QuotientRing::operator-=( const QuotientRing& n ) noexcept { if( m_p_M == nullptr ){ m_p_M = n.m_p_M; } m_n -= n.m_n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template template inline QuotientRing& QuotientRing::operator-=( const T& n ) noexcept { m_p_M == nullptr ? m_n -= n : ( m_n -= n % *m_p_M ) %= *m_p_M; return *this; } template inline QuotientRing& QuotientRing::operator*=( const QuotientRing& n ) noexcept { if( m_p_M == nullptr ){ m_p_M = n.m_p_M; } m_n *= n.m_n; if( m_p_M != nullptr ){ m_n %= *m_p_M; } return *this; } template template inline QuotientRing& QuotientRing::operator*=( const T& n ) noexcept { m_p_M == nullptr ? m_n *= n : ( m_n *= n % *m_p_M ) %= *m_p_M; return *this; } template inline QuotientRing& QuotientRing::operator/=( const QuotientRing& n ) { if( m_p_M == nullptr ){ if( n.m_p_M == nullptr ){ assert( n.m_n != 0 ); m_n /= n.m_n; return *this; } else { m_p_M = n.m_p_M; } } return operator*=( Inverse( QuotientRing( n.m_n , m_p_M ) ) ); } template template inline QuotientRing& QuotientRing::operator/=( const T& n ) { if( m_p_M == nullptr ){ assert( n.m_n != 0 ); m_n /= n.m_n; return *this; } return operator*=( Inverse( Q( n.m_n , m_p_M ) ) ); } template inline bool QuotientRing::operator==( const QuotientRing& n ) const noexcept { return m_p_M == n.m_p_M && m_n == n.m_n; } template template inline bool QuotientRing::operator==( const T& n ) const noexcept { return m_n == n; } template template inline bool QuotientRing::operator!=( const T& n ) const noexcept { return !operator==( n ); } template template inline QuotientRing QuotientRing::operator+( const T& n ) const noexcept { return QuotientRing( *this ).operator+=( n ); } template inline QuotientRing QuotientRing::operator-() const noexcept { return QuotientRing( -m_n , m_p_M ); } template template inline QuotientRing QuotientRing::operator-( const T& n ) const noexcept { return QuotientRing( *this ).operator-=( n ); } template template inline QuotientRing QuotientRing::operator*( const T& n ) const noexcept { return QuotientRing( *this ).operator*=( n ); } template template inline QuotientRing QuotientRing::operator/( const T& n ) const { return QuotientRing( *this ).operator/=( n ); } template inline const INT& QuotientRing::Represent() const noexcept { return m_n; } template inline const INT& QuotientRing::GetModulo() const noexcept { static const INT zero{ 0 }; return m_p_M == nullptr ? zero : *m_p_M; } template inline void QuotientRing::SetModulo( const INT* const& p_M ) noexcept { m_p_M = p_M; if( m_p_M != nullptr ){ m_n %= *m_p_M; } } template inline const INT& QuotientRing::GetStaticModulo() noexcept { static const INT zero{ 0 }; return g_p_M == nullptr ? zero : *g_p_M; } template inline void QuotientRing::SetStaticModulo( const INT* const& p_M ) noexcept { g_p_M = p_M; } template template QuotientRing QuotientRing::Power( const QuotientRing& n , T exponent ) { QuotientRing answer{ 1 , n.m_p_M }; QuotientRing power{ n }; while( exponent != 0 ){ if( exponent % 2 == 1 ){ answer *= power; } power *= power; exponent /= 2; } return answer; } template inline QuotientRing QuotientRing::Inverse( const QuotientRing& n ) { assert( n.m_p_M != nullptr ); return Power( n , *( n.m_p_M ) - 2 ); } template inline QuotientRing Power( const QuotientRing& n , T exponent ) { return QuotientRing::template Power( n , exponent ); } template inline QuotientRing Inverse( const QuotientRing& n ) { return QuotientRing::Inverse( n ); } template inline basic_istream& operator>>( basic_istream& is , QuotientRing& n ) { INT m; is >> m; n = m; return is; } template inline basic_ostream& operator<<( basic_ostream& os , const QuotientRing& n ) { return os << n.Represent(); } #define DECLARATION_OF_CPOINT( POINT ) inline const U& POINT() const noexcept #define DECLARATION_OF_POINT( POINT ) inline U& POINT() noexcept #define DEFINITION_OF_CPOINT( POINT ) template inline const U& VirtualPointedSet::POINT() const noexcept { return Point(); } #define DEFINITION_OF_POINT( POINT ) template inline U& VirtualPointedSet::POINT() noexcept { return Point(); } // - インタフェースをなるべく抽象型で与えて仮想継承する。 // - 具体的構造が2種類以上あるものはもちろん抽象型を仮想継承する。 // - VirtualPointedSetのように具体的構造が1種類しかないものも仮想継承のコンストラクタ呼び出しを // 省略するためになるべく抽象型を用意する。 // - AbstractDijkstraのように全ての具体的構造が1つの具体的構造の派生である場合は // インタフェースを必要としない。 // - コンストラクタはなるべく省略できるようにするが、ポインタはメンバ変数にしない。 // - VirtualGraphのように具体的構造が2種類以上あるもので全てに共通の定義本体を持つ関数(Edge)が // 必要な場合は実装が膨れ上がらないように抽象型に関数の定義をし、そのため抽象型にメンバ変数が // 必要になる場合はコンストラクタを非自明なものにする // - 代わりにポインタを抽象型のメンバとして // 派生クラスのコンストラクタの定義内でアドレスを渡すようにすると、ムーブなどで意図せず // ポインタの指すアドレスが意図通りでなくなることに注意する。 template class UnderlyingSet { public: using type = U; }; template class VirtualPointedSet : virtual public UnderlyingSet { public: virtual const U& Point() const noexcept = 0; virtual U& Point() noexcept = 0; DECLARATION_OF_CPOINT( Unit ); DECLARATION_OF_CPOINT( Zero ); DECLARATION_OF_CPOINT( One ); DECLARATION_OF_CPOINT( Infty ); DECLARATION_OF_POINT( init ); DECLARATION_OF_POINT( root ); }; template class PointedSet : virtual public VirtualPointedSet { private: U m_b_U; public: inline PointedSet( const U& b_u = U() ); inline const U& Point() const noexcept; inline U& Point() noexcept; }; template class VirtualNSet : virtual public UnderlyingSet { public: virtual U Transfer( const U& u ) = 0; inline U Inverse( const U& u ); }; template class AbstractNSet : virtual public VirtualNSet { private: F_U& m_f_U; public: inline AbstractNSet( F_U& f_U ); inline U Transfer( const U& u ); }; template class VirtualMagma : virtual public UnderlyingSet { public: virtual U Product( const U& u0 , const U& u1 ) = 0; inline U Sum( const U& u0 , const U& u1 ); }; template class AdditiveMagma : virtual public VirtualMagma { public: inline U Product( const U& u0 , const U& u1 ); }; template class MultiplicativeMagma : virtual public VirtualMagma { public: inline U Product( const U& u0 , const U& u1 ); }; template class AbstractMagma : virtual public VirtualMagma { private: M_U& m_m_U; public: inline AbstractMagma( M_U& m_U ); inline U Product( const U& u0 , const U& u1 ); }; template inline PointedSet::PointedSet( const U& b_U ) : m_b_U( b_U ) {} template inline const U& PointedSet::Point() const noexcept { return m_b_U; } template inline U& PointedSet::Point() noexcept { return m_b_U; } DEFINITION_OF_CPOINT( Unit ); DEFINITION_OF_CPOINT( Zero ); DEFINITION_OF_CPOINT( One ); DEFINITION_OF_CPOINT( Infty ); DEFINITION_OF_POINT( init ); DEFINITION_OF_POINT( root ); template inline AbstractNSet::AbstractNSet( F_U& f_U ) : m_f_U( f_U ) { static_assert( is_invocable_r_v ); } template inline U AbstractNSet::Transfer( const U& u ) { return m_f_U( u ); } template inline U VirtualNSet::Inverse( const U& u ) { return Transfer( u ); } template inline AbstractMagma::AbstractMagma( M_U& m_U ) : m_m_U( m_U ) { static_assert( is_invocable_r_v ); } template inline U AdditiveMagma::Product( const U& u0 , const U& u1 ) { return u0 + u1; } template inline U MultiplicativeMagma::Product( const U& u0 , const U& u1 ) { return u0 * u1; } template inline U AbstractMagma::Product( const U& u0 , const U& u1 ) { return m_m_U( u0 , u1 ); } template inline U VirtualMagma::Sum( const U& u0 , const U& u1 ) { return Product( u0 , u1 ); } template class VirtualMonoid : virtual public VirtualMagma , virtual public VirtualPointedSet {}; template class AdditiveMonoid : virtual public VirtualMonoid , public AdditiveMagma , public PointedSet {}; template class MultiplicativeMonoid : virtual public VirtualMonoid , public MultiplicativeMagma , public PointedSet { public: inline MultiplicativeMonoid( const U& e_U ); }; template class AbstractMonoid : virtual public VirtualMonoid , public AbstractMagma , public PointedSet { public: inline AbstractMonoid( M_U& m_U , const U& e_U ); }; template inline MultiplicativeMonoid::MultiplicativeMonoid( const U& e_U ) : PointedSet( e_U ) {} template inline AbstractMonoid::AbstractMonoid( M_U& m_U , const U& e_U ) : AbstractMagma( m_U ) , PointedSet( e_U ) {} // M.One()による初期化O(size) // 配列による初期化O(N) // 一点更新O(log_2 N) // 一点取得O(1) // 区間積取得O(log_2 N) template class AbstractSegmentTree { private: int m_size; int m_power; MONOID m_M; vector m_a; public: inline AbstractSegmentTree( MONOID M ); inline AbstractSegmentTree( MONOID M , const vector& a ); inline void Set( const vector& a ); void Set( const int& i , const U& u ); inline const U& operator[]( const int& i ) const; inline const U& Get( const int& i ) const; U IntervalProduct( const int& i_start , const int& i_final ); }; template AbstractSegmentTree( MONOID M ) -> AbstractSegmentTree,MONOID>; template class SegmentTree : public AbstractSegmentTree> { public: template inline SegmentTree( const U& one_U , const Args&... args ); }; template inline AbstractSegmentTree::AbstractSegmentTree( MONOID M ) : AbstractSegmentTree( move( M ) , vector() ) {} template inline AbstractSegmentTree::AbstractSegmentTree( MONOID M , const vector& a ) : m_size( a.size() ) , m_power( 1 ) , m_M( move( M ) ) , m_a() { static_assert( is_same_v> ); while( m_size > m_power ){ m_power <<= 1; } m_a.resize( m_power << 1 , m_M.One() ); for( int i = 0 ; i < m_size ; i++ ){ m_a[m_power | i] = a[i]; } for( int j = m_power - 1 ; j >= 1 ; j-- ){ int j2 = j << 1; m_a[j] = m_M.Product( m_a[j2] , m_a[j2+1] ); } } template template inline SegmentTree::SegmentTree( const U& one_U , const Args&... args ) : AbstractSegmentTree>( MultiplicativeMonoid( one_U ) , args... ) {} template inline void AbstractSegmentTree::Set( const vector& a ) { *this = AbstractSegmentTree( move( m_M ) , a ); } template void AbstractSegmentTree::Set( const int& i , const U& u ) { assert( 0 <= i && i < m_size ); int j = m_power | i; m_a[j] = u; while( ( j >>= 1 ) >= 1 ){ int j2 = j << 1; m_a[j] = m_M.Product( m_a[j2] , m_a[j2+1] ); } return; } template inline const U& AbstractSegmentTree::operator[]( const int& i ) const { assert( 0 <= i && i < m_size ); return m_a[m_power + i]; } template inline const U& AbstractSegmentTree::Get( const int& i ) const { return operator[]( i ); } template U AbstractSegmentTree::IntervalProduct( const int& i_start , const int& i_final ) { int j_min = m_power | max( 0 , i_start ); int j_ulim = m_power + min( i_final + 1 , m_size ); U answer0 = m_M.One(); U answer1 = answer0; while( j_min < j_ulim ){ ( j_min & 1 ) == 1 ? answer0 = m_M.Product( answer0 , m_a[j_min++] ) : answer0; ( j_ulim & 1 ) == 1 ? answer1 = m_M.Product( m_a[--j_ulim] , answer1 ) : answer1; j_min >>= 1; j_ulim >>= 1; } return m_M.Product( answer0 , answer1 ); } // AAA ライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define SIGNAL signal( SIGABRT , &AlertAbort ); #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define SIGNAL #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; } #define CIN_A( LL , A , N ) vector A( N ); SET_A( A , N ); #endif #include using namespace std; #define REPEAT_MAIN( BOUND ) int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) COUT( __VA_ARGS__ ); return // 型のエイリアス #define decldecay_t( VAR ) decay_t template using ret_t = decltype( declval()( declval()... ) ); template using inner_t = typename T::type; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; template using T2 = pair; template using T3 = tuple; template using T4 = tuple; // 入出力用 template inline basic_istream& VariadicCin( basic_istream& is ) { return is; } template inline basic_istream& VariadicCin( basic_istream& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator ) { return is; } template inline basic_istream& VariadicGetline( basic_istream& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); } template inline basic_ostream& operator<<( basic_ostream& os , const vector& arg ) { auto begin = arg.begin() , end = arg.end(); auto itr = begin; while( itr != end ){ ( itr == begin ? os : os << " " ) << *itr; itr++; } return os; } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg& arg ) { return os << arg; } template inline basic_ostream& VariadicCout( basic_ostream& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); } // デバッグ用 #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void AutoCheck( bool& auto_checked ); #endif #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN