#if __INCLUDE_LEVEL__ == 0 #include __BASE_FILE__ namespace { void solve() { int n, k; i64 L, U; scan(n, k, L, U); std::vector a(n); scan(a); ranges::sort(a); const i64 D = U - L; i64 ans = inf(); for (int _ = 2; _--;) { int m = 0; while (a[div_floor(m, 2)] + D < a.rbegin()[div_ceil(m, 2)]) { ++m; } L = a[m / 2] - k; U = L + D; std::vector f(k * 2 + 1); for (const i64 e : a) { for (int i = static_cast(floor(0, k, e - L + 1)); i < k * 2; i += k) { const i64 t = div_ceil(std::max(L + i - e, i64{0}), k); f[std::max(i, 0)] += t; f[std::min(i + k, k * 2)] -= t; } for (int i = static_cast(floor(0, k, e - U)); i < k * 2; i += k) { const i64 t = div_ceil(std::max(e - U - i, i64{0}), k); f[std::max(i, 0)] += t; f[std::min(i + k, k * 2)] -= t; } } f.pop_back(); std::partial_sum(f.begin(), f.end(), f.begin()); chmin(ans, ranges::min(f)); for (i64& e : a) { e = -e; } ranges::reverse(a); } print(ans); } } // namespace int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); solve(); } #else // __INCLUDE_LEVEL__ #include constexpr auto div_floor(auto x, auto y) { return x / y - ((x ^ y) < 0 && x % y); } constexpr auto div_ceil(auto x, auto y) { return x / y + (0 <= (x ^ y) && x % y); } constexpr auto floor(auto x, auto y) { return div_floor(x, y) * y; } constexpr auto floor(auto x, auto y, auto z) { return floor(x - z, y) + z; } constexpr auto ceil(auto x, auto y) { return div_ceil(x, y) * y; } constexpr auto ceil(auto x, auto y, auto z) { return ceil(x - z, y) + z; } constexpr auto modulo(auto x, auto y) { return x - floor(x, y); } template bool chmin(T& x, U&& y) { return y < x && (x = std::forward(y), true); } template bool chmax(T& x, U&& y) { return x < y && (x = std::forward(y), true); } template T inf() { T ret; std::memset(&ret, 0x3f, sizeof(ret)); return ret; } template T inf() { return std::numeric_limits::infinity(); } template concept Range = std::ranges::range && !std::convertible_to; template concept Tuple = std::__is_tuple_like::value && !Range; namespace std { istream& operator>>(istream& is, Range auto&& r) { for (auto&& e : r) { is >> e; } return is; } istream& operator>>(istream& is, Tuple auto&& t) { return apply([&](auto&... xs) -> istream& { return (is >> ... >> xs); }, t); } ostream& operator<<(ostream& os, Range auto&& r) { for (string_view sep = ""; auto&& e : r) { os << exchange(sep, " ") << e; } return os; } ostream& operator<<(ostream& os, Tuple auto&& t) { const auto f = [&](auto&... xs) -> ostream& { [[maybe_unused]] string_view sep = ""; ((os << exchange(sep, " ") << xs), ...); return os; }; return apply(f, t); } } // namespace std #define DEF_INC_OR_DEC(op) \ auto& operator op(Range auto&& r) { \ for (auto&& e : r) { \ op e; \ } \ return r; \ } \ auto& operator op(Tuple auto&& t) { \ std::apply([](auto&... xs) { (op xs, ...); }, t); \ return t; \ } DEF_INC_OR_DEC(++) DEF_INC_OR_DEC(--) #undef DEF_INC_OR_DEC void scan(auto&&... xs) { std::cin >> std::tie(xs...); } void print(auto&&... xs) { std::cout << std::tie(xs...) << '\n'; } #define FWD(...) static_cast(__VA_ARGS__) template class fix { public: explicit fix(F f) : f_(std::move(f)) {} decltype(auto) operator()(auto&&... xs) const { return f_(std::ref(*this), FWD(xs)...); } private: F f_; }; template concept LambdaExpr = std::is_placeholder_v> != 0 || std::is_bind_expression_v>; auto operator++(LambdaExpr auto&& x, int) { return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)++; }, FWD(x)); } auto operator--(LambdaExpr auto&& x, int) { return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)--; }, FWD(x)); } #define DEF_UNARY_OP(op) \ auto operator op(LambdaExpr auto&& x) { \ return std::bind([](auto&& x) -> decltype(auto) { return op FWD(x); }, FWD(x)); \ } DEF_UNARY_OP(++) DEF_UNARY_OP(--) DEF_UNARY_OP(+) DEF_UNARY_OP(-) DEF_UNARY_OP(~) DEF_UNARY_OP(!) DEF_UNARY_OP(*) DEF_UNARY_OP(&) #undef DEF_UNARY_OP #define DEF_BINARY_OP(op) \ template \ requires LambdaExpr || LambdaExpr \ auto operator op(T1&& x, T2&& y) { \ return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x) op FWD(y); }, \ FWD(x), FWD(y)); \ } DEF_BINARY_OP(+=) DEF_BINARY_OP(-=) DEF_BINARY_OP(*=) DEF_BINARY_OP(/=) DEF_BINARY_OP(%=) DEF_BINARY_OP(^=) DEF_BINARY_OP(&=) DEF_BINARY_OP(|=) DEF_BINARY_OP(<<=) DEF_BINARY_OP(>>=) DEF_BINARY_OP(+) DEF_BINARY_OP(-) DEF_BINARY_OP(*) DEF_BINARY_OP(/) DEF_BINARY_OP(%) DEF_BINARY_OP(^) DEF_BINARY_OP(&) DEF_BINARY_OP(|) DEF_BINARY_OP(<<) DEF_BINARY_OP(>>) DEF_BINARY_OP(==) DEF_BINARY_OP(!=) DEF_BINARY_OP(<) DEF_BINARY_OP(>) DEF_BINARY_OP(<=) DEF_BINARY_OP(>=) DEF_BINARY_OP(&&) DEF_BINARY_OP(||) #undef DEF_BINARY_OP template requires LambdaExpr || LambdaExpr auto at(T1&& x, T2&& y) { return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x)[FWD(y)]; }, FWD(x), FWD(y)); } template auto get(LambdaExpr auto&& x) { return std::bind([](auto&& x) -> decltype(auto) { return std::get(FWD(x)); }, FWD(x)); } inline auto rep(int l, int r) { return std::views::iota(std::min(l, r), r); } inline auto rep(int n) { return rep(0, n); } inline auto rep1(int l, int r) { return rep(l, r + 1); } inline auto rep1(int n) { return rep(1, n + 1); } using namespace std::literals; using namespace std::placeholders; namespace ranges = std::ranges; namespace views = std::views; using i64 = std::int64_t; #endif // __INCLUDE_LEVEL__