from collections import Counter, defaultdict, deque import sys input=sys.stdin.readline W,H=map(int,input().split()) # https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans st = SortedMultiset() N=W par=[i for i in range(N)] rank=[0]*(N) friend=[0]*N block=[0]*N size=[1]*N def find(x): if par[x]==x: return x else: par[x]=find(par[x]) return par[x] #同じ集合か判定 def same(x,y): return find(x)==find(y) def union(x,y): x=find(x) y=find(y) if x==y: return if rank[x]>rank[y]: par[y]=x size[x]+=size[y] else: par[x]=y size[y]+=size[x] if rank[x]==rank[y]: rank[y]+=1 mod=998244353 def xgcd(a, b): x0, y0, x1, y1 = 1, 0, 0, 1 while b != 0: q, a, b = a // b, b, a % b x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 return a, x0, y0 def modinv(a, m): g, x, y = xgcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m gt=modinv(10,mod) ans=pow(10,N,mod);F=[-1]*N E={} for i in range(N): E[i]=10 for i in range(H): S=input() D={} for j in range(W): s=S[j] if s.isdigit(): if F[j]==-1 or F[j]==s: F[find(j)]=s else: ans*=0 if E[find(j)]==10: ans*=gt ans%=mod E[find(j)]=1 elif s!='?': if s not in D: D[s]=[] D[s].append(j) for d in D: B=D[d] for k in range(1,len(B)): p,q=B[0],B[k] pp,qq=find(p),find(q) if pp!=qq: union(p,q) if F[pp]==F[qq]: if F[pp]==-1: ans*=gt ans%=mod else: if F[pp]==-1 or F[qq]==-1: F[find(p)]=str(max(int(F[pp]),int(F[qq]))) ans*=gt ans%=mod else: ans*=0 print(ans)