#ifndef LOCAL #define FAST_IO #endif // ============ #include #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i) #define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER2(i, n) for (i32 i = (i32)(n)-1; i >= 0; --i) #define PER3(i, m, n) for (i32 i = (i32)(n)-1; i >= (i32)(m); --i) #define PER(...) OVERRIDE(__VA_ARGS__, PER3, PER2)(__VA_ARGS__) #define ALL(x) begin(x), end(x) #define LEN(x) (i32)(x.size()) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using i32 = signed int; using i64 = signed long long; using f64 = double; using f80 = long double; using pi = pair; using pl = pair; template using V = vector; template using VV = V>; template using VVV = V>>; template using VVVV = V>>>; template using PQR = priority_queue, greater>; template bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } template i32 lob(const V &arr, const T &v) { return (i32)(lower_bound(ALL(arr), v) - arr.begin()); } template i32 upb(const V &arr, const T &v) { return (i32)(upper_bound(ALL(arr), v) - arr.begin()); } template V argsort(const V &arr) { V ret(arr.size()); iota(ALL(ret), 0); sort(ALL(ret), [&](i32 i, i32 j) -> bool { if (arr[i] == arr[j]) { return i < j; } else { return arr[i] < arr[j]; } }); return ret; } #ifdef INT128 using u128 = __uint128_t; using i128 = __int128_t; #endif [[maybe_unused]] constexpr i32 INF = 1000000100; [[maybe_unused]] constexpr i64 INF64 = 3000000000000000100; struct SetUpIO { SetUpIO() { #ifdef FAST_IO ios::sync_with_stdio(false); cin.tie(nullptr); #endif cout << fixed << setprecision(15); } } set_up_io; void scan(char &x) { cin >> x; } void scan(u32 &x) { cin >> x; } void scan(u64 &x) { cin >> x; } void scan(i32 &x) { cin >> x; } void scan(i64 &x) { cin >> x; } void scan(string &x) { cin >> x; } template void scan(V &x) { for (T &ele : x) { scan(ele); } } void read() {} template void read(Head &head, Tail &...tail) { scan(head); read(tail...); } #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__); #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__); #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__); #define I32(...) \ i32 __VA_ARGS__; \ read(__VA_ARGS__); #define I64(...) \ i64 __VA_ARGS__; \ read(__VA_ARGS__); #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__); #define VEC(type, name, size) \ V name(size); \ read(name); #define VVEC(type, name, size1, size2) \ VV name(size1, V(size2)); \ read(name); // ============ #ifdef DEBUGF #else #define DBG(...) (void)0 #endif // ============ #include #include // ============ #include #include #include template struct Edge { using W = T; int from, to, id; W weight; Edge rev() const { return Edge{to, from, id, weight}; } }; template void debug(const Edge &e) { std::cerr << e.from << " -> " << e.to << " id = " << e.id << std::cerr << " weight = "; debug(e.weight); } template class Graph { public: using E = Edge; using W = T; static constexpr bool DIRECTED = DIR; struct Adjacency { using Iter = typename std::vector::iterator; Iter be, en; Iter begin() const { return be; } Iter end() const { return en; } int size() const { return (int)std::distance(be, en); } E &operator[](int idx) const { return be[idx]; } }; struct ConstAdjacency { using Iter = typename std::vector::const_iterator; Iter be, en; Iter begin() const { return be; } Iter end() const { return en; } int size() const { return (int)std::distance(be, en); } const E &operator[](int idx) const { return be[idx]; } }; private: int n, m; std::vector edges, csr; std::vector sep; bool built; public: Graph(int n) : n(n), m(0), built(false) {} int v() const { return n; } int e() const { return m; } int add_vertex() { return n++; } void add_edge(int from, int to, W weight = 1) { assert(0 <= from && from < n && 0 <= to && to < n); edges.emplace_back(E{from, to, m++, weight}); } void build() { sep.assign(n + 1, 0); csr.resize(DIRECTED ? m : 2 * m); for (const E &e : edges) { ++sep[e.from + 1]; if (!DIRECTED) { ++sep[e.to + 1]; } } for (int i = 0; i < n; ++i) { sep[i + 1] += sep[i]; } std::vector c = sep; for (const E &e : edges) { csr[c[e.from]++] = e; if (!DIRECTED) { csr[c[e.to]++] = e.rev(); } } built = true; } Adjacency operator[](int v) { assert(built && 0 <= v && v < n); return Adjacency{csr.begin() + sep[v], csr.begin() + sep[v + 1]}; } ConstAdjacency operator[](int v) const { assert(built && 0 <= v && v < n); return ConstAdjacency{csr.begin() + sep[v], csr.begin() + sep[v + 1]}; } }; // ============ class HeavyLightDecomposition { public: std::vector siz, par, hea, in, out, dep, rev; private: template void dfs1(Graph &g, int v) { if (g[v].size() >= 1 && g[v][0].to == par[v]) { std::swap(g[v][0], g[v][g[v].size() - 1]); } for (Edge &e : g[v]) { if (e.to != par[v]) { par[e.to] = v; dfs1(g, e.to); siz[v] += siz[e.to]; if (siz[e.to] > siz[g[v][0].to]) { std::swap(g[v][0], e); } } } } template void dfs2(const Graph &g, int v, int &t) { in[v] = t; rev[t++] = v; for (const Edge &e : g[v]) { if (e.to == par[v]) { continue; } if (e.to == g[v][0].to) { hea[e.to] = hea[v]; } else { hea[e.to] = e.to; } dep[e.to] = dep[v] + 1; dfs2(g, e.to, t); } out[v] = t; } public: template HeavyLightDecomposition(Graph &g, int root = 0) : siz(g.v(), 1), par(g.v(), root), hea(g.v(), root), in(g.v(), 0), out(g.v(), 0), dep(g.v(), 0), rev(g.v(), 0) { assert(0 <= root && root < g.v()); dfs1(g, root); int t = 0; dfs2(g, root, t); } // par^k int la(int v, int k) const { assert(0 <= v && v < (int)dep.size()); assert(k >= 0); if (k > dep[v]) { return -1; } while (true) { int u = hea[v]; if (in[u] + k <= in[v]) { return rev[in[v] - k]; } k -= in[v] - in[u] + 1; v = par[u]; } return 0; } int lca(int u, int v) const { assert(0 <= u && u < (int)dep.size()); assert(0 <= v && v < (int)dep.size()); while (u != v) { if (in[u] > in[v]) { std::swap(u, v); } if (hea[u] == hea[v]) { v = u; } else { v = par[hea[v]]; } } return u; } int dist(int u, int v) const { assert(0 <= u && u < (int)dep.size()); assert(0 <= v && v < (int)dep.size()); return dep[u] + dep[v] - 2 * dep[lca(u, v)]; } int jump(int u, int v, int k) const { assert(0 <= u && u < (int)dep.size()); assert(0 <= v && v < (int)dep.size()); assert(k >= 0); int l = lca(u, v); int dis = dep[u] + dep[v] - 2 * dep[l]; if (k > dis) { return -1; } if (k <= dep[u] - dep[l]) { return la(u, k); } else { return la(v, dis - k); } } int meet(int u, int v, int w) const { return lca(u, v) ^ lca(v, w) ^ lca(w, u); } std::vector> path(int u, int v, bool edge) const { assert(0 <= u && u < (int)dep.size()); assert(0 <= v && v < (int)dep.size()); std::vector> fromu, fromv; bool rev = false; while (true) { if (u == v && edge) { break; } if (in[u] > in[v]) { std::swap(u, v); std::swap(fromu, fromv); rev ^= true; } if (hea[u] == hea[v]) { fromv.emplace_back(in[v], in[u] + (int)edge); v = u; break; } else { fromv.emplace_back(in[v], in[hea[v]]); v = par[hea[v]]; } } if (rev) { std::swap(fromu, fromv); } std::reverse(fromv.begin(), fromv.end()); fromu.reserve(fromv.size()); for (auto [x, y] : fromv) { fromu.emplace_back(y, x); } return fromu; } }; // ============ // ============ #include #include template class CoordinateCompression { std::vector data; int size_sum() { return 0; } template int size_sum(const std::vector &head, const Tail &...tail) { return (int)head.size() + size_sum(tail...); } void push() {} template void push(const std::vector &head, const Tail &...tail) { for (const T &ele : head) { data.emplace_back(ele); } push(tail...); } void compress() {} template void compress(std::vector &head, Tail &...tail) { for (T &ele : head) { ele = (T)(std::lower_bound(data.begin(), data.end(), ele) - data.begin()); } compress(tail...); } public: template CoordinateCompression(V &...v) { data.reserve(size_sum(v...)); push(v...); std::sort(data.begin(), data.end()); data.erase(std::unique(data.begin(), data.end()), data.end()); compress(v...); } const T &operator[](const T &ele) const { return data[ele]; } int size() const { return data.size(); } bool contains(const T &ele) const { auto it = std::lower_bound(data.begin(), data.end(), ele); return it != data.end() && *it == ele; } T cc(const T &ele) const { return (T)(std::lower_bound(data.begin(), data.end(), ele) - data.begin()); } }; // ============ void solve() { I32(n); VEC(i32, a, n); Graph<> g(n); REP(i, n - 1) { I32(u, v); --u; --v; g.add_edge(u, v); } g.build(); HeavyLightDecomposition hld(g); CoordinateCompression _cc(a); VV idx(_cc.size()); REP(i, n) { idx[a[i]].push_back(i); } V ans(n, 0); auto rec = [&](auto rec, i32 l, i32 r) -> void { if (r - l == 1) { i32 u = idx[l][0], v = u, d = 0; for (i32 ver : idx[l]) { if (chmax(d, hld.dist(u, ver))) { v = ver; } } d = 0; u = v; for (i32 ver : idx[l]) { if (chmax(d, hld.dist(v, ver))) { u = ver; } } for (i32 ver : idx[l]) { chmax(ans[ver], hld.dist(ver, u)); chmax(ans[ver], hld.dist(ver, v)); } return; } i32 mid = (l + r) / 2; i32 u = idx[mid][0], v = u, d = 0; REP(i, mid, r) for (i32 ver : idx[i]) { if (chmax(d, hld.dist(u, ver))) { v = ver; } } d = 0; u = v; REP(i, mid, r) for (i32 ver : idx[i]) { if (chmax(d, hld.dist(v, ver))) { u = ver; } } REP(i, l, mid) for (i32 ver : idx[i]) { chmax(ans[ver], hld.dist(ver, u)); chmax(ans[ver], hld.dist(ver, v)); } rec(rec, l, mid); rec(rec, mid, r); }; rec(rec, 0, LEN(idx)); REP(i, n) { cout << ans[i] << " \n"[i + 1 == n]; } } int main() { i32 t = 1; // cin >> t; while (t--) { solve(); } }