from fractions import Fraction # 線分ABと線分CDの交点を求める関数 def _calc_cross_point(pointA, pointB, pointC, pointD): cross_point = (0,0) bunbo = (pointB[0] - pointA[0]) * (pointD[1] - pointC[1]) - (pointB[1] - pointA[1]) * (pointD[0] - pointC[0]) bunbo = Fraction(bunbo) # 直線が平行な場合 if (bunbo == 0): return False, cross_point vectorAC = ((pointC[0] - pointA[0]), (pointC[1] - pointA[1])) r = ((pointD[1] - pointC[1]) * vectorAC[0] - (pointD[0] - pointC[0]) * vectorAC[1]) / bunbo s = ((pointB[1] - pointA[1]) * vectorAC[0] - (pointB[0] - pointA[0]) * vectorAC[1]) / bunbo # rを使った計算の場合 distance = ((pointB[0] - pointA[0]) * r, (pointB[1] - pointA[1]) * r) #cross_point = (int(pointA[0] + distance[0]), int(pointA[1] + distance[1])) cross_point = (pointA[0] + distance[0], pointA[1] + distance[1]) # sを使った計算の場合 # distance = ((pointD[0] - pointC[0]) * s, (pointD[1] - pointC[1]) * s) # cross_point = (int(pointC[0] + distance[0]), int(pointC[1] + distance[1])) return True, cross_point import sys input = sys.stdin.readline T = int(input()) XY = [list(map(int, input().split())) for _ in range(T)] for x1, y1, x2, y2, X1, Y1, X2, Y2 in XY: ret, cp = _calc_cross_point((x1, y1), (X1, Y1), (x2, y2), (X2, Y2)) #print(ret, cp) if ret==False: print("No") continue cx, cy = cp p1c = (x1-cx)**2+(y1-cy)**2 p2c = (x2-cx)**2+(y2-cy)**2 p1q1 = (X1-x1)**2+(Y1-y1)**2 p2q2 = (X2-x2)**2+(Y2-y2)**2 if p1c*p2q2==p2c*p1q1: print("Yes") else: print("No")