// #pragma GCC optimize("O3,unroll-loops") #include // #include using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif template struct modular_fixed_base{ #define IS_INTEGRAL(T) (is_integral_v || is_same_v || is_same_v) #define IS_UNSIGNED(T) (is_unsigned_v || is_same_v) static_assert(IS_UNSIGNED(data_t)); static_assert(_mod >= 1); static constexpr bool VARIATE_MOD_FLAG = false; static constexpr data_t mod(){ return _mod; } template static vector precalc_power(T base, int SZ){ vector res(SZ + 1, 1); for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base; return res; } static vector _INV; static void precalc_inverse(int SZ){ if(_INV.empty()) _INV.assign(2, 1); for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]); } // _mod must be a prime static modular_fixed_base _primitive_root; static modular_fixed_base primitive_root(){ if(_primitive_root) return _primitive_root; if(_mod == 2) return _primitive_root = 1; if(_mod == 998244353) return _primitive_root = 3; data_t divs[20] = {}; divs[0] = 2; int cnt = 1; data_t x = (_mod - 1) / 2; while(x % 2 == 0) x /= 2; for(auto i = 3; 1LL * i * i <= x; i += 2){ if(x % i == 0){ divs[cnt ++] = i; while(x % i == 0) x /= i; } } if(x > 1) divs[cnt ++] = x; for(auto g = 2; ; ++ g){ bool ok = true; for(auto i = 0; i < cnt; ++ i){ if((modular_fixed_base(g).power((_mod - 1) / divs[i])) == 1){ ok = false; break; } } if(ok) return _primitive_root = g; } } constexpr modular_fixed_base(){ } modular_fixed_base(const double &x){ data = _normalize(llround(x)); } modular_fixed_base(const long double &x){ data = _normalize(llround(x)); } template::type* = nullptr> modular_fixed_base(const T &x){ data = _normalize(x); } template::type* = nullptr> static data_t _normalize(const T &x){ int sign = x >= 0 ? 1 : -1; data_t v = _mod <= sign * x ? sign * x % _mod : sign * x; if(sign == -1 && v) v = _mod - v; return v; } template::type* = nullptr> operator T() const{ return data; } modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; } modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; } template::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); } template::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); } modular_fixed_base &operator++(){ return *this += 1; } modular_fixed_base &operator--(){ return *this += _mod - 1; } modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; } modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; } modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); } modular_fixed_base &operator*=(const modular_fixed_base &rhs){ if constexpr(is_same_v) data = (unsigned long long)data * rhs.data % _mod; else if constexpr(is_same_v){ long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data); data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod); } else data = _normalize(data * rhs.data); return *this; } template::type* = nullptr> modular_fixed_base &inplace_power(T e){ if(e == 0) return *this = 1; if(data == 0) return *this = {}; if(data == 1) return *this; if(data == mod() - 1) return e % 2 ? *this : *this = -*this; if(e < 0) *this = 1 / *this, e = -e; modular_fixed_base res = 1; for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this; return *this = res; } template::type* = nullptr> modular_fixed_base power(T e) const{ return modular_fixed_base(*this).inplace_power(e); } modular_fixed_base &operator/=(const modular_fixed_base &otr){ make_signed_t a = otr.data, m = _mod, u = 0, v = 1; if(a < _INV.size()) return *this *= _INV[a]; while(a){ make_signed_t t = m / a; m -= t * a; swap(a, m); u -= t * v; swap(u, v); } assert(m == 1); return *this *= u; } #define ARITHMETIC_OP(op, apply_op)\ modular_fixed_base operator op(const modular_fixed_base &x) const{ return modular_fixed_base(*this) apply_op x; }\ template::type* = nullptr>\ modular_fixed_base operator op(const T &x) const{ return modular_fixed_base(*this) apply_op modular_fixed_base(x); }\ template::type* = nullptr>\ friend modular_fixed_base operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x) apply_op y; } ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=) #undef ARITHMETIC_OP #define COMPARE_OP(op)\ bool operator op(const modular_fixed_base &x) const{ return data op x.data; }\ template::type* = nullptr>\ bool operator op(const T &x) const{ return data op modular_fixed_base(x).data; }\ template::type* = nullptr>\ friend bool operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x).data op y.data; } COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=) #undef COMPARE_OP friend istream &operator>>(istream &in, modular_fixed_base &number){ long long x; in >> x; number.data = modular_fixed_base::_normalize(x); return in; } #define _SHOW_FRACTION friend ostream &operator<<(ostream &out, const modular_fixed_base &number){ out << number.data; #if defined(LOCAL) && defined(_SHOW_FRACTION) cerr << "("; for(auto d = 1; ; ++ d){ if((number * d).data <= 1000000){ cerr << (number * d).data; if(d != 1) cerr << "/" << d; break; } else if((-number * d).data <= 1000000){ cerr << "-" << (-number * d).data; if(d != 1) cerr << "/" << d; break; } } cerr << ")"; #endif return out; } data_t data = 0; #undef _SHOW_FRACTION #undef IS_INTEGRAL #undef IS_SIGNED }; template vector> modular_fixed_base::_INV; template modular_fixed_base modular_fixed_base::_primitive_root; const unsigned int mod = (119 << 23) + 1; // 998244353 // const unsigned int mod = 1e9 + 7; // 1000000007 // const unsigned int mod = 1e9 + 9; // 1000000009 // const unsigned long long mod = (unsigned long long)1e18 + 9; using modular = modular_fixed_base, mod>; template struct combinatorics{ // O(n) static vector precalc_fact(int n){ vector f(n + 1, 1); for(auto i = 1; i <= n; ++ i) f[i] = f[i - 1] * i; return f; } // O(n * m) static vector> precalc_C(int n, int m){ vector> c(n + 1, vector(m + 1)); for(auto i = 0; i <= n; ++ i) for(auto j = 0; j <= min(i, m); ++ j) c[i][j] = i && j ? c[i - 1][j - 1] + c[i - 1][j] : T(1); return c; } int SZ = 0; vector inv, fact, invfact; combinatorics(){ } // O(SZ) combinatorics(int SZ): SZ(SZ), inv(SZ + 1, 1), fact(SZ + 1, 1), invfact(SZ + 1, 1){ for(auto i = 1; i <= SZ; ++ i) fact[i] = fact[i - 1] * i; invfact[SZ] = 1 / fact[SZ]; for(auto i = SZ - 1; i >= 0; -- i){ invfact[i] = invfact[i + 1] * (i + 1); inv[i + 1] = invfact[i + 1] * fact[i]; } } // O(1) T C(int n, int k) const{ assert(0 <= min(n, k) && max(n, k) <= SZ); return n >= k ? fact[n] * invfact[k] * invfact[n - k] : T{0}; } // O(1) T P(int n, int k) const{ assert(0 <= min(n, k) && max(n, k) <= SZ); return n >= k ? fact[n] * invfact[n - k] : T{0}; } // O(1) T H(int n, int k) const{ assert(0 <= min(n, k)); if(n == 0) return 0; return C(n + k - 1, k); } // O(min(k, n - k)) T naive_C(long long n, long long k) const{ assert(0 <= min(n, k)); if(n < k) return 0; T res = 1; k = min(k, n - k); assert(k <= SZ); for(auto i = n; i > n - k; -- i) res *= i; return res * invfact[k]; } // O(k) T naive_P(long long n, int k) const{ assert(0 <= min(n, k)); if(n < k) return 0; T res = 1; for(auto i = n; i > n - k; -- i) res *= i; return res; } // O(k) T naive_H(long long n, int k) const{ assert(0 <= min(n, k)); return naive_C(n + k - 1, k); } // O(1) bool parity_C(long long n, long long k) const{ assert(0 <= min(n, k)); return n >= k ? (n & k) == k : false; } // Number of ways to place n '('s and k ')'s starting with m copies of '(' such that in each prefix, number of '(' is equal or greater than ')' // Catalan(n, n, 0): n-th catalan number // Catalan(s, s+k-1, k-1): sum of products of k catalan numbers where the index of product sums up to s. // O(1) T Catalan(int n, int k, int m = 0) const{ assert(0 <= min({n, k, m})); return k <= m ? C(n + k, n) : k <= n + m ? C(n + k, n) - C(n + k, k - m - 1) : T(); } }; // T must be of modular type // mod must be a prime // Requires modular template struct number_theoric_transform_wrapper{ // i \in [2^k, 2^{k+1}) holds w_{2^k+1}^{i-2^k} static vector root, buffer1, buffer2; static void adjust_root(int n){ if(root.empty()) root = {1, 1}; for(auto k = (int)root.size(); k < n; k <<= 1){ root.resize(n, 1); T w = T::primitive_root().power((T::mod() - 1) / (k << 1)); for(auto i = k; i < k << 1; ++ i) root[i] = i & 1 ? root[i >> 1] * w : root[i >> 1]; } } // n must be a power of two // p must have next n memories allocated // O(n * log(n)) static void transform(int n, T *p, bool invert = false){ assert(n && __builtin_popcount(n) == 1 && (T::mod() - 1) % n == 0); for(auto i = 1, j = 0; i < n; ++ i){ int bit = n >> 1; for(; j & bit; bit >>= 1) j ^= bit; j ^= bit; if(i < j) swap(p[i], p[j]); } adjust_root(n); for(auto len = 1; len < n; len <<= 1) for(auto i = 0; i < n; i += len << 1) for(auto j = 0; j < len; ++ j){ T x = p[i + j], y = p[len + i + j] * root[len + j]; p[i + j] = x + y, p[len + i + j] = x - y; } if(invert){ reverse(p + 1, p + n); T inv_n = T(1) / n; for(auto i = 0; i < n; ++ i) p[i] *= inv_n; } } static void transform(vector &p, bool invert = false){ transform((int)p.size(), p.data(), invert); } // Double the length of the ntt array // n must be a power of two // p must have next 2n memories allocated // O(n * log(n)) static void double_up(int n, T *p){ assert(n && __builtin_popcount(n) == 1 && (T().mod() - 1) % (n << 1) == 0); buffer1.resize(n << 1); for(auto i = 0; i < n; ++ i) buffer1[i << 1] = p[i]; transform(n, p, true); adjust_root(n << 1); for(auto i = 0; i < n; ++ i) p[i] *= root[n | i]; transform(n, p); for(auto i = 0; i < n; ++ i) buffer1[i << 1 | 1] = p[i]; copy(buffer1.begin(), buffer1.begin() + 2 * n, p); } static void double_up(vector &p){ int n = (int)p.size(); p.resize(n << 1); double_up(n, p.data()); } // O(n * m) static vector convolute_naive(const vector &p, const vector &q){ vector res(max((int)p.size() + (int)q.size() - 1, 0)); for(auto i = 0; i < (int)p.size(); ++ i) for(auto j = 0; j < (int)q.size(); ++ j) res[i + j] += p[i] * q[j]; return res; } // O((n + m) * log(n + m)) static vector convolute(const vector &p, const vector &q){ if(min(p.size(), q.size()) < 55) return convolute_naive(p, q); int m = (int)p.size() + (int)q.size() - 1, n = 1 << __lg(m) + 1; buffer1.assign(n, 0); copy(p.begin(), p.end(), buffer1.begin()); transform(buffer1); buffer2.assign(n, 0); copy(q.begin(), q.end(), buffer2.begin()); transform(buffer2); for(auto i = 0; i < n; ++ i) buffer1[i] *= buffer2[i]; transform(buffer1, true); return vector(buffer1.begin(), buffer1.begin() + m); } // O((n + m) * log(n + m)) static vector square(const vector &p){ if((int)p.size() < 40) return convolute_naive(p, p); int m = 2 * (int)p.size() - 1, n = 1 << __lg(m) + 1; buffer1.assign(n, 0); copy(p.begin(), p.end(), buffer1.begin()); transform(buffer1); for(auto i = 0; i < n; ++ i) buffer1[i] *= buffer1[i]; transform(buffer1, true); return vector(buffer1.begin(), buffer1.begin() + m); } // O((n + m) * log(n + m)) static vector arbitrarily_convolute(const vector &p, const vector &q){ using modular0 = modular_fixed_base; using modular1 = modular_fixed_base; using modular2 = modular_fixed_base; using ntt0 = number_theoric_transform_wrapper; using ntt1 = number_theoric_transform_wrapper; using ntt2 = number_theoric_transform_wrapper; vector p0((int)p.size()), q0((int)q.size()); for(auto i = 0; i < (int)p.size(); ++ i) p0[i] = p[i].data; for(auto i = 0; i < (int)q.size(); ++ i) q0[i] = q[i].data; auto xy0 = ntt0::convolute(p0, q0); vector p1((int)p.size()), q1((int)q.size()); for(auto i = 0; i < (int)p.size(); ++ i) p1[i] = p[i].data; for(auto i = 0; i < (int)q.size(); ++ i) q1[i] = q[i].data; auto xy1 = ntt1::convolute(p1, q1); vector p2((int)p.size()), q2((int)q.size()); for(auto i = 0; i < (int)p.size(); ++ i) p2[i] = p[i].data; for(auto i = 0; i < (int)q.size(); ++ i) q2[i] = q[i].data; auto xy2 = ntt2::convolute(p2, q2); static const modular1 r01 = 1 / modular1(modular0::mod()); static const modular2 r02 = 1 / modular2(modular0::mod()); static const modular2 r12 = 1 / modular2(modular1::mod()); static const modular2 r02r12 = r02 * r12; static const T w1 = modular0::mod(); static const T w2 = w1 * modular1::mod(); int n = (int)p.size() + (int)q.size() - 1; vector res(n); for(auto i = 0; i < n; ++ i){ using ull = unsigned long long; ull a = xy0[i].data; ull b = (xy1[i].data + modular1::mod() - a) * r01.data % modular1::mod(); ull c = ((xy2[i].data + modular2::mod() - a) * r02r12.data + (modular2::mod() - b) * r12.data) % modular2::mod(); res[i] = xy0[i].data + w1 * b + w2 * c; } return res; } }; template vector number_theoric_transform_wrapper::root; template vector number_theoric_transform_wrapper::buffer1; template vector number_theoric_transform_wrapper::buffer2; using ntt = number_theoric_transform_wrapper; template struct y_combinator_result{ F f; template explicit y_combinator_result(T &&f): f(forward(f)){ } template decltype(auto) operator()(Args &&...args){ return f(ref(*this), forward(args)...); } }; template decltype(auto) y_combinator(F &&f){ return y_combinator_result>(forward(f)); } int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); const int mx = 1e5; combinatorics C(mx); int n; cin >> n; vector cnt(mx + 1); for(auto i = 0; i < n; ++ i){ int x; cin >> x; ++ cnt[x]; } auto power = modular::precalc_power(2, n); vector f(mx + 1); y_combinator([&](auto self, int l, int r)->void{ if(r - l == 1){ f[l] = (f[l] + C.invfact[l]) * (power[cnt[l]] - 1); return; } int m = l + r >> 1; self(l, m); vector p(f.begin() + l, f.begin() + m); vector q(r - l); for(auto i = 1; i < r - l; ++ i){ q[i] = C.invfact[i]; } p = ntt::convolute(p, q); for(auto i = m; i < r; ++ i){ if(i - l < (int)p.size()){ f[i] += p[i - l]; } } self(m, r); })(0, mx + 1); modular res = 0; for(auto x = 0; x <= mx; ++ x){ res += C.fact[x] * f[x]; } cout << res << "\n"; return 0; } /* */